3

我有一个很大的嵌套列表,嵌套列表中的每个列表都包含一个格式化为浮点数的数字列表。然而,除了少数例外,嵌套列表中的每个单独的列表都是相同的。我想提取嵌套列表中所有列表共有的数字。我的问题的一个简单示例如下所示:

nested_list = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]

在以下情况下,我想提取以下内容:

common_vals = [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0]

我尝试使用设置交集来解决这个问题,但因为我无法让它在嵌套列表的所有元素上工作。

4

4 回答 4

6

您可以使用reduceset.intersection

>>> reduce(set.intersection, map(set, nested_list))
set([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])

用于itertools.imap内存高效的解决方案。

时序比较:

>>> lis = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]
>>> %timeit set.intersection(*map(set, lis))
100000 loops, best of 3: 12.5 us per loop
>>> %timeit set.intersection(*(set(e) for e in lis))
10000 loops, best of 3: 14.4 us per loop
>>> %timeit reduce(set.intersection, map(set, lis))
10000 loops, best of 3: 12.8 us per loop
>>> %timeit reduce(set.intersection, imap(set, lis))
100000 loops, best of 3: 13.1 us per loop
>>> %timeit set.intersection(set(lis[0]), *islice(lis, 1, None))
100000 loops, best of 3: 10.6 us per loop


>>> lis = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]*1000
>>> %timeit set.intersection(*map(set, lis))
10 loops, best of 3: 16.4 ms per loop
>>> %timeit set.intersection(*(set(e) for e in lis))
10 loops, best of 3: 15.8 ms per loop
>>> %timeit reduce(set.intersection, map(set, lis))
100 loops, best of 3: 16.3 ms per loop
>>> %timeit reduce(set.intersection, imap(set, lis))
10 loops, best of 3: 13.8 ms per loop
>>> %timeit set.intersection(set(lis[0]), *islice(lis, 1, None))
100 loops, best of 3: 8.4 ms per loop


>>> lis = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]*10**5
>>> %timeit set.intersection(*map(set, lis))  
1 loops, best of 3: 1.92 s per loop
>>> %timeit set.intersection(*(set(e) for e in lis))
1 loops, best of 3: 2.17 s per loop
>>> %timeit reduce(set.intersection, map(set, lis))
1 loops, best of 3: 2.14 s per loop
>>> %timeit reduce(set.intersection, imap(set, lis))
1 loops, best of 3: 1.52 s per loop
>>> %timeit set.intersection(set(lis[0]), *islice(lis, 1, None))
1 loops, best of 3: 913 ms per loop

结论:

就效率而言, Steven Rumbalski 的解决方案显然是最好的。

于 2013-06-27T18:38:00.283 回答
6

试试这个,这是最简单的解决方案:

set.intersection(*map(set, nested_list))

或者,如果您更喜欢使用生成器表达式,这在内存使用方面应该是更有效的解决方案:

set.intersection(*(set(e) for e in nested_list))
于 2013-06-27T18:46:52.263 回答
6

Ashwini Chaudhary 的解决方案很优雅,但对于大量输入可能效率很低,因为它创建了许多中间集。如果您nested_list很大,请执行以下操作:

>>> set.intersection(set(nested_list[0]), *itertools.islice(nested_list, 1, None))
set([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
于 2013-06-27T18:51:04.257 回答
0

计算出现在nested_list 中的列表集合中每个元素的出现次数,如果出现次数等于nested_list 中的元素数,则对所有元素都是通用的。如果 nested_list 的元素中没有重复的数字,则不需要 set 转换

nested_list = [[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0],
              [2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0]]

from collections import Counter
result = [val for val,cnt in Counter([x for t in nested_list for x in set(t)]).items() if cnt == len(nested_list)]
print result


 #  [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0]
于 2013-06-27T18:50:15.390 回答