是的先生,当然先生,马上先生。
//Experimenting with Risk variant
//Because figuring out the actual mathmatics behind this is hard.
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
//#define DISTRUSTRAND 1
//#define VERBOSE 1
int g_rollArray[100];
int compare (const void * a, const void * b)
{
return ( *(int*)b - *(int*)a );
}
int diceRoll(int dieSize)
{
int roll = rand()%(dieSize-1);
g_rollArray[roll]++;
return roll+1;
}
// MAIN!
int main( int argc, char* args[] )
{
int seed;
int maxRound=100000; //Some arbitrarily large number.
int round=0;
int i;
memset(g_rollArray,0,sizeof(int)*100);
//Hmmm, there could be a mix of troops, but right now, let's say it's uniform.
const int numAtt = 3; //How many troops they bring into the fight, that's how many dice they roll
const int powAtt = 8; //The size of the dice they roll. Like d4, d6, d8.
int rollAtt[numAtt];
const int numDef = 2; //How many troops they bring into the fight, that's how many dice they roll
const int powDef = 6; //The size of the dice they roll. Like d4, d6, d8.
int rollDef[numDef];
int lossAtt=0; //Assuming a big-ass pool of troops behind them. Whoever runs out of a pool first loses.
int lossDef=0;
seed = time(0);
srand(time(0));
printf("seed: %d\n",seed);
#ifdef DISTRUSTRAND
for(i=0; i<10; i++)
{
printf("%d: %d\n",i, rollArray[i]);
}
#endif
for(round=0; round<maxRound; round++)
{
for(i=0; i<numAtt; i++)
{
rollAtt[i] = diceRoll(powAtt);
}
for(i=0; i<numDef; i++)
{
rollDef[i] = diceRoll(powDef);
}
qsort (rollAtt, numAtt, sizeof(int), compare);
qsort (rollDef, numDef, sizeof(int), compare);
#ifdef VERBOSE
printf("sort Att: ");
for(i=0; i<numAtt; i++)
{
printf("%d ",rollAtt[i]);
}
printf("\n");
printf("sort Def: ");
for(i=0; i<numDef; i++)
{
printf("%d ",rollDef[i]);
}
printf("\n");
#endif
//The MIN here decrees that armies can only lose the forces they commit to a fight
for(i=0; i<MIN(numDef,numAtt); i++)
{
#ifdef VERBOSE
printf("Comp: %d Vs %d \n",rollAtt[i], rollDef[i]);
#endif
//Defenders win ties
if(rollAtt[i] > rollDef[i])
{
lossDef++;
}
else
{
lossAtt++;
}
}
}
printf("Att losses: %d \n",lossAtt);
printf("Def losses: %d \n",lossDef);
if(lossAtt > lossDef)
{
printf("Odds to win: Defender \nKill ratio: %f\n", (float)lossAtt/(float)lossDef);
}
else
{
printf("Odds to win: Attacker \nKill ratio: %f\n", (float)lossDef/(float)lossAtt);
}
#ifdef DISTRUSTRAND
for(i=0; i<10; i++)
{
printf("%d: %d\n",i, rollArray[i]);
}
#endif
return 0;
}
/* meh, unneeded, mingw's rand()%whatnot works well enough.
int betterRand(int n)
{
return rand() / (RAND_MAX / n + 1);
}
float betterFRand(float n)
{
return (float)rand()/((float)RAND_MAX/n);
}
*/
虽然最初的风险规则集只为攻击者提供了大约 8% 的优势,这相当于大约 1:1.06 的杀伤率,但事实证明,如果你改变骰子大小,几率会很快发生变化。给攻击者 d8,给他们 1:3 的杀伤率。也就是说,掷出 1-8 的军队有机会击败只掷出 1-6 但规模是其 3 倍的军队。
如果你在军队之间保持骰子大小均匀,但增加它,随着平局的影响减少,几率会稍微转移到攻击者身上
增加模具辊的数量比增加模具辊的尺寸具有更微妙的影响。拥有 3 个 d6 的防御者略好于拥有 2 个 d8 的攻击者。
所以总而言之,对于任何想要玩弄风险规则并看看结果如何的 DM 来说,这都是一个很好的起点。
希望一旦我把头绕在 R 上,我会用图表和东西得到更好的答案。