1

我刚开始使用 Spark 0.7.2 和 Scala 2.9.3 进行编程。我正在一台独立机器上测试机器学习算法,算法的最后一步需要计算两个矩阵之间的 MSE(均方误差),即 || A - M||^2 并且我们在两个矩阵之间进行元素减法。由于 A 的潜在大小非常大且非常稀疏,我们将矩阵存储为 (key, value) 对,其中键是坐标 (i,j),值是 A 的对应元素的元组, M,即(A_ij,M_ij)。整个 ML 算法是梯度下降,因此对于每次迭代,我们都会计算 MSE 并针对某个阈值对其进行测试。但是,整个程序运行正常,没有计算每次迭代的 MSE。这是程序的样子:

val ITERATIONS = 100
for (i <- 1 to ITERATIONS) {
  ... // calculate M for each iteration
  val mse = A.map{ x => 
    val A_ij = x._2(0) 
    val M_ij = x._2(1)
    (A_ij - M_ij) * (A_ij - M_ij)
  }.reduce(_+_)
  ...
}

该程序最多只能运行 45 次迭代,它会因以下 Spark 异常而崩溃:

[error] (run-main) spark.SparkException: Job failed: ShuffleMapTask(764, 0) failed: ExceptionFailure(java.lang.StackOverflowError)
spark.SparkException: Job failed: ShuffleMapTask(764, 0) failed: ExceptionFailure(java.lang.StackOverflowError)
    at spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:642)
    at spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:640)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:640)
    at spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:601)
    at spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:300)
    at spark.scheduler.DAGScheduler.spark$scheduler$DAGScheduler$$run(DAGScheduler.scala:364)
    at spark.scheduler.DAGScheduler$$anon$1.run(DAGScheduler.scala:107)
java.lang.RuntimeException: Nonzero exit code: 1
    at scala.sys.package$.error(package.scala:27)

另一个观察结果是,对于每次迭代,运行时间将增加约 5%。同样没有“reduce(_ + _)”,就没有 StackOverflowError。我试图将并行度增加到可能的物理线程总数,但这无济于事。

真的很感谢任何人都可以指出一些方向,我可以找出堆栈溢出错误的根本原因。

编辑

  1. A 的类型是 spark.RDD[((Double, Double), Array[Double])]
  2. stackoverflow 异常,它从 " at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source)" 重复 61 次:

    13/06/26 00:44:41 ERROR LocalScheduler: Exception in task 0
    java.lang.StackOverflowError
        at java.lang.Exception.<init>(Exception.java:77)
        at java.lang.reflect.InvocationTargetException.<init>(InvocationTargetException.java:54)
        at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
        at java.lang.reflect.Method.invoke(Method.java:597)
        at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:974)
        at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1849)
        at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1753)
        at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1329)
        at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1947)
        at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1871)
        at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1753)
        at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1329)
        at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1947)
        at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1871)
        at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1753)
        at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1329)
        at java.io.ObjectInputStream.readObject(ObjectInputStream.java:351)
        at scala.collection.immutable.$colon$colon.readObject(List.scala:435)
        at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source)
    
  3. 主要迭代代码

一些实用功能包含在下一个列表元素中

while (i <= ITERATION && err >= THRESHOLD) {      
  // AW: group by row, then create key by col
  // split A by row
  // (col, (A_w_M_element, W_row_vector, (row, col)))
  AW = A.map(x =>
    (x._1._1, (x._1, x._2))
  ).cogroup(W).flatMap( x => {
    val wt_i = x._2._2(0)
    val A_i_by_j = x._2._1
    A_i_by_j.map( j => (j._1._2, (j._2, wt_i, j._1)))
  })

  // calculate the X = Wt*A
  X_i_by_j = AW.map( k => 
    (k._1, k._2._2.map(_*k._2._1(0)))
  ).reduceByKey(op_two_arrays(_, _, add))

  // Y = Wt*M = Wt*WH at the same time  
  Y_i_by_j = AW.map( k => 
    (k._1, k._2._2.map(_*k._2._1(2)))
  ).reduceByKey(op_two_arrays(_, _, add))

  // X ./ Y
  X_divide_Y = X_i_by_j.join(Y_i_by_j).map(x => 
    (x._1, op_two_arrays(x._2._1, x._2._2, divide))
  )

  // H = H .* X_divide_Y
  H = H.join(X_divide_Y).map(x => 
    (x._1, op_two_arrays(x._2._1, x._2._2, multiple))
  )

  // Update M = WH
  // M = matrix_multi_local(AW, H)
  A = AW.join(H).map( x => {
    val orig_AwM = x._2._1._1
    val W_row = x._2._1._2
    val cord = x._2._1._3
    val H_col = x._2._2
    // notice that we include original A here as well
    (cord, Array(orig_AwM(0), orig_AwM(1), dot_product_local(W_row, H_col)))
  })

  // split M into two intermediate matrix (one by row, and the other by col)

  /*val M_by_i = M.map(x =>
    (x._1._1, (x._1, x._2))
  )
  val M_by_j = M.map(x =>
    (x._1._2, (x._1, x._2))
  )*/

  // AH: group by col, then create key by row
  // Divide A by row first
  // val AH = matrix_join_local(M_by_j, H)
  AH = A.map(x =>
    (x._1._2, (x._1, x._2))
  ).cogroup(H).flatMap( x => {
    val H_col = x._2._2(0)
    val AM_j_by_i = x._2._1
    AM_j_by_i.map( i => (i._1._1, (i._2, H_col, i._1)))
  })

  // calculate V = At*H
  V_j_by_i = AH.map( k => 
    (k._1, k._2._2.map(_*k._2._1(0)))
  ).reduceByKey(op_two_arrays(_, _, add))

  // calculate U = Mt*H
  U_j_by_i = AH.map( k => 
    (k._1, k._2._2.map(_*k._2._1(2)))
  ).reduceByKey(op_two_arrays(_, _, add))

  // V / U
  V_divide_U = V_j_by_i.join(U_j_by_i).map(x => 
    (x._1, op_two_arrays(x._2._1, x._2._2, divide))
  )

  // W = W .* V_divide_U
  W = W.join(V_divide_U).map(x => 
    (x._1, op_two_arrays(x._2._1, x._2._2, multiple))
  )
  // M = W*H
  A = AH.join(W).map( x => {
    val orig_AwM = x._2._1._1
    val H_col = x._2._1._2
    val cord = x._2._1._3
    val W_row = x._2._2
    // notice that we include original A here as well
    (cord, Array(orig_AwM(0), orig_AwM(1), dot_product_local(W_row, H_col)))
  })  

  // Calculate the error
  // calculate the sequre of difference
  err = A.map( x => (x._2(0) - x._2(2))*(x._2(0) - x._2(2))/A_len).reduce(_+_)
  println("At round " + i + ": MSE is " + err)
}

一些使用的实用程序功能:

def op_two_arrays (array1: Array[Double], array2: Array[Double], f: (Double, Double) => Double) : Array[Double] = {
  val len1 = array1.length
  val len2 = array2.length
  if (len1 != len2) {
    return null
  }
  // val new_array : Array[Double] = new Array[Double](len1)
  for (i <- 0 to len1 - 1) {
    array1(i) = f(array1(i), array2(i))
  }
  return array1
}

// element-wise operation
def add (a: Double, b: Double): Double = { a + b }

def multiple (a: Double, b: Double): Double = { a * b }

def divide (a: Double, b: Double): Double = {
  try {
    return a / b
  } catch {
    case x: ArithmeticException => {
      println("ArithmeticException: detect divide by zero")
      return Double.NaN
    }
  }
}

def array_sum (array: Array[Double]) : Double = {
  var sum: Double = 0.0
  for (i <- array) {
    sum += i
  }
  return sum
}

def dot_product (vec1: Array[Double], vec2: Array[Double]) : Double = {
  array_sum(op_two_arrays(vec1, vec2, multiple))
}
4

1 回答 1

0

我尝试使用 spark.util.Vector 增加堆栈大小,本地化实用程序函数,但不幸的是,它们都没有解决。然后我尝试将 Spark 从 0.7.2 降级到 0.6.3 ( https://github.com/mesos/spark/tree/branch-0.6 )。即使对于 10,000 x 10,000 的矩阵,它也可以工作并且不再有 Stack Overflow。我不知道它是如何修复它的,所以我reduce在 RDD.scala 中发布了函数之间的区别:

--- spark-0.6.3/core/src/main/scala/spark/RDD.scala 2013-06-27 11:31:12.628017194 -0700
+++ spark-0.7.2/core/src/main/scala/spark/RDD.scala 2013-06-27 13:42:22.844686240 -0700
@@ -316,39 +468,93 @@
   def reduce(f: (T, T) => T): T = {
     val cleanF = sc.clean(f)
+    // println("RDD.reduce: after sc.clean")
     val reducePartition: Iterator[T] => Option[T] = iter => {
       if (iter.hasNext) {
         Some(iter.reduceLeft(cleanF))
-      }else {
+      } else {
         None
       }
     }
-    val options = sc.runJob(this, reducePartition)
-    val results = new ArrayBuffer[T]
-    for (opt <- options; elem <- opt) {
-      results += elem
-    }
-    if (results.size == 0) {
-      throw new UnsupportedOperationException("empty collection")
-    } else {
-      return results.reduceLeft(cleanF)
+    // println("RDD.reduce: after reducePartition")
+    var jobResult: Option[T] = None
+    val mergeResult = (index: Int, taskResult: Option[T]) => {
+      if (taskResult != None) {
+        jobResult = jobResult match {
+          case Some(value) => Some(f(value, taskResult.get))
+          case None => taskResult
+        }
+      }
     }
+    // println("RDD.reduce: after jobResult")
+    sc.runJob(this, reducePartition, mergeResult)
+    // println("RDD.reduce: after sc.runJob")
+    // Get the final result out of our Option, or throw an exception if the RDD was empty
+    jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
+    // println("RDD.reduce: finished")
   }

   /**
    * Aggregate the elements of each partition, and then the results for all the partitions, using a
-   * given associative function and a neutral "zero value". The function op(t1, t2) is allowed to 
+   * given associative function and a neutral "zero value". The function op(t1, t2) is allowed to
    * modify t1 and return it as its result value to avoid object allocation; however, it should not
    * modify t2.
    */
   def fold(zeroValue: T)(op: (T, T) => T): T = {
+    // Clone the zero value since we will also be serializing it as part of tasks
+    var jobResult = Utils.clone(zeroValue, sc.env.closureSerializer.newInstance())
     val cleanOp = sc.clean(op)
-    val results = sc.runJob(this, (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp))
-    return results.fold(zeroValue)(cleanOp)
+    val foldPartition = (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp)
+    val mergeResult = (index: Int, taskResult: T) => jobResult = op(jobResult, taskResult)
+    sc.runJob(this, foldPartition, mergeResult)
+    jobResult
   }
于 2013-06-27T22:30:20.487 回答