如果您使用 将 2D 坐标转换target_map
为平面索引np.ravel_multi_index
,则可以使用np.unique
和np.bincount
来加快速度:
def vec_intensity(my_arr, target_map) :
flat_coords = np.ravel_multi_index((my_arr[:, 0], my_arr[:, 1]),
dims=target_map.shape)
unique_, idx = np.unique(flat_coords, return_inverse=True)
sum_ = np.bincount(idx, weights=my_arr[:, 2])
target_map.ravel()[unique_] += sum_
return target_map
def intensity(my_arr, target_map) :
for x, y, intensity in myarr:
target_map[x, y] += intensity
return target_map
#sample data set
rows, cols = 150, 200
items = 219929
myarr = np.empty((items, 3), dtype=np.uint32)
myarr[:, 0] = np.random.randint(rows, size=(items,))
myarr[:, 1] = np.random.randint(cols, size=(items,))
myarr[:, 2] = np.random.randint(100, size=(items,))
现在:
In [6]: %timeit target_map_1 = np.zeros((rows, cols), dtype=np.uint32); target_map_1 = vec_intensity(myarr, target_map_1)
10 loops, best of 3: 53.1 ms per loop
In [7]: %timeit target_map_2 = np.zeros((rows, cols), dtype=np.uint32); target_map_2 = intensity(myarr, target_map_2)
1 loops, best of 3: 934 ms per loop
In [8]: np.all(target_map_1 == target_map_2)
Out[8]: True
这几乎是 20 倍的速度提升。