下面的功能可以解决我的部分问题。它被命名为“mprod”与 prod,类似于 times 与 mtimes。通过一些重塑,它递归地使用multiprod 。通常,递归函数调用比循环慢。Multiprod 声称要快 100 倍以上,因此它应该不仅仅是补偿。
function sqMat = mprod(M)
% Multiply *many* square matrices together, stored
% as 3D array M. Speed gain through recursive use
% of function 'multiprod' (Leva, 2010).
% check if M consists of multiple matrices
if size(M,3) > 1
% check for odd number of matrices
if mod(size(M,3),2)
siz = size(M,1);
M = cat(3,M,eye(siz));
end
% create two smaller 3D arrays
X = M(:,:,1:2:end); % odd pages
Y = M(:,:,2:2:end); % even pages
% recursive call
sqMat = mprod(multiprod(X,Y));
else
% create final 2D matrix and break recursion
sqMat = M(:,:,1);
end
end
我没有测试这个功能的速度或准确性。 我相信这比循环快得多。它不会“矢量化”操作,因为它不能用于更高维度;此函数的任何重复使用都必须在循环内完成。
编辑下面是似乎工作得足够快的新代码。对函数的递归调用很慢并且会占用堆栈内存。仍然包含一个循环,但将循环数减少了 log(n)/log(2)。此外,增加了对更多维度的支持。
function sqMats = mprod(M)
% Multiply *many* square matrices together, stored along 3rd axis.
% Extra dimensions are conserved; use 'permute' to change axes of "M".
% Speed gained by recursive use of 'multiprod' (Leva, 2010).
% save extra dimensions, then reshape
dims = size(M);
M = reshape(M,dims(1),dims(2),dims(3),[]);
extraDim = size(M,4);
% Check if M consists of multiple matrices...
% split into two sets and multiply using multiprod, recursively
siz = size(M,3);
while siz > 1
% check for odd number of matrices
if mod(siz,2)
addOn = repmat(eye(size(M,1)),[1,1,1,extraDim]);
M = cat(3,M,addOn);
end
% create two smaller 3D arrays
X = M(:,:,1:2:end,:); % odd pages
Y = M(:,:,2:2:end,:); % even pages
% recursive call and actual matrix multiplication
M = multiprod(X,Y);
siz = size(M,3);
end
% reshape to original dimensions, minus the third axis.
dims(3) = [];
sqMats = reshape(M,dims);
end