我试图解释为什么您看不到两个内核的执行重叠。为此,我构建了下面报告的代码,它使用您的两个内核并监控每个块在哪个流式多处理器 (SM) 上运行。我正在使用 CUDA 6.5 (Release Candidate) 并且我在 GT540M 卡上运行,它只有2
SM,因此它提供了一个简单的工作场所。blockSize
选择权交给了新的 CUDA 6.5设施cudaOccupancyMaxPotentialBlockSize
。
编码
#include <stdio.h>
#include <time.h>
//#define DEBUG_MODE
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/**************************************************/
/* STREAMING MULTIPROCESSOR IDENTIFICATION NUMBER */
/**************************************************/
__device__ unsigned int get_smid(void) {
unsigned int ret;
asm("mov.u32 %0, %smid;" : "=r"(ret) );
return ret;
}
/************/
/* KERNEL 1 */
/************/
__global__ void kernel_1(float * __restrict__ data, const float value, int *sm, int N)
{
int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N) {
data[i] = data[i] / value;
if (threadIdx.x==0) sm[blockIdx.x]=get_smid();
}
}
//__global__ void kernel_1(float* data, float value, int N)
//{
// int start = blockIdx.x * blockDim.x + threadIdx.x;
// for (int i = start; i < N; i += blockDim.x * gridDim.x)
// {
// data[i] = data[i] / value;
// }
//}
/************/
/* KERNEL 2 */
/************/
__global__ void kernel_2(float * __restrict__ data, const float value, int *sm, int N)
{
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i < N) {
data[i] = data[i] * (value + sin(double(i)) * 1./cos(double(i)));
if (threadIdx.x==0) sm[blockIdx.x]=get_smid();
}
}
//__global__ void kernel_2(float* data, float value, int N)
//{
// int start = blockIdx.x * blockDim.x + threadIdx.x;
// for (int i = start; i < N; i += blockDim.x * gridDim.x)
// {
// data[i] = data[i] * (value + sin(double(i)) * 1./cos(double(i)));
// }
//}
/********/
/* MAIN */
/********/
int main()
{
const int N = 10000;
const float value = 5.55f;
const int rep_num = 20;
// --- CPU memory allocations
float *h_data1 = (float*) malloc(N*sizeof(float));
float *h_data2 = (float*) malloc(N*sizeof(float));
float *h_data1_ref = (float*) malloc(N*sizeof(float));
float *h_data2_ref = (float*) malloc(N*sizeof(float));
// --- CPU data initializations
srand(time(NULL));
for (int i=0; i<N; i++) {
h_data1[i] = rand() / RAND_MAX;
h_data2[i] = rand() / RAND_MAX;
}
// --- GPU memory allocations
float *d_data1, *d_data2;
gpuErrchk(cudaMalloc((void**)&d_data1, N*sizeof(float)));
gpuErrchk(cudaMalloc((void**)&d_data2, N*sizeof(float)));
// --- CPU -> GPU memory transfers
gpuErrchk(cudaMemcpy(d_data1, h_data1, N*sizeof(float), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(d_data2, h_data2, N*sizeof(float), cudaMemcpyHostToDevice));
// --- CPU data initializations
srand(time(NULL));
for (int i=0; i<N; i++) {
h_data1_ref[i] = h_data1[i] / value;
h_data2_ref[i] = h_data2[i] * (value + sin(double(i)) * 1./cos(double(i)));
}
// --- Stream creations
cudaStream_t stream1, stream2;
gpuErrchk(cudaStreamCreate(&stream1));
gpuErrchk(cudaStreamCreate(&stream2));
// --- Launch parameters configuration
int blockSize1, blockSize2, minGridSize1, minGridSize2, gridSize1, gridSize2;
cudaOccupancyMaxPotentialBlockSize(&minGridSize1, &blockSize1, kernel_1, 0, N);
cudaOccupancyMaxPotentialBlockSize(&minGridSize2, &blockSize2, kernel_2, 0, N);
gridSize1 = (N + blockSize1 - 1) / blockSize1;
gridSize2 = (N + blockSize2 - 1) / blockSize2;
// --- Allocating space for SM IDs
int *h_sm_11 = (int*) malloc(gridSize1*sizeof(int));
int *h_sm_12 = (int*) malloc(gridSize1*sizeof(int));
int *h_sm_21 = (int*) malloc(gridSize2*sizeof(int));
int *h_sm_22 = (int*) malloc(gridSize2*sizeof(int));
int *d_sm_11, *d_sm_12, *d_sm_21, *d_sm_22;
gpuErrchk(cudaMalloc((void**)&d_sm_11, gridSize1*sizeof(int)));
gpuErrchk(cudaMalloc((void**)&d_sm_12, gridSize1*sizeof(int)));
gpuErrchk(cudaMalloc((void**)&d_sm_21, gridSize2*sizeof(int)));
gpuErrchk(cudaMalloc((void**)&d_sm_22, gridSize2*sizeof(int)));
// --- Timing individual kernels
float time;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
for (int i=0; i<rep_num; i++) kernel_1<<<gridSize1, blockSize1>>>(d_data1, value, d_sm_11, N);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Kernel 1 - elapsed time: %3.3f ms \n", time/rep_num);
cudaEventRecord(start, 0);
for (int i=0; i<rep_num; i++) kernel_2<<<gridSize2, blockSize2>>>(d_data1, value, d_sm_21, N);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Kernel 2 - elapsed time: %3.3f ms \n", time/rep_num);
// --- No stream case
cudaEventRecord(start, 0);
kernel_1<<<gridSize1, blockSize1>>>(d_data1, value, d_sm_11, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
gpuErrchk(cudaMemcpy(h_data1, d_data1, N*sizeof(float), cudaMemcpyDeviceToHost));
// --- Results check
for (int i=0; i<N; i++) {
if (h_data1[i] != h_data1_ref[i]) {
printf("Kernel1 - Error at i = %i; Host = %f; Device = %f\n", i, h_data1_ref[i], h_data1[i]);
return;
}
}
#endif
kernel_2<<<gridSize2, blockSize2>>>(d_data1, value, d_sm_21, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
kernel_1<<<gridSize1, blockSize1>>>(d_data2, value, d_sm_12, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
gpuErrchk(cudaMemcpy(d_data2, h_data2, N*sizeof(float), cudaMemcpyHostToDevice));
#endif
kernel_2<<<gridSize2, blockSize2>>>(d_data2, value, d_sm_22, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
gpuErrchk(cudaMemcpy(h_data2, d_data2, N*sizeof(float), cudaMemcpyDeviceToHost));
for (int i=0; i<N; i++) {
if (h_data2[i] != h_data2_ref[i]) {
printf("Kernel2 - Error at i = %i; Host = %f; Device = %f\n", i, h_data2_ref[i], h_data2[i]);
return;
}
}
#endif
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("No stream - elapsed time: %3.3f ms \n", time);
// --- Stream case
cudaEventRecord(start, 0);
kernel_1<<<gridSize1, blockSize1, 0, stream1 >>>(d_data1, value, d_sm_11, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
kernel_1<<<gridSize1, blockSize1, 0, stream2 >>>(d_data2, value, d_sm_12, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
kernel_2<<<gridSize2, blockSize2, 0, stream1 >>>(d_data1, value, d_sm_21, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
kernel_2<<<gridSize2, blockSize2, 0, stream2 >>>(d_data2, value, d_sm_22, N);
#ifdef DEBUG_MODE
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
#endif
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Stream - elapsed time: %3.3f ms \n", time);
cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);
printf("Test passed!\n");
gpuErrchk(cudaMemcpy(h_sm_11, d_sm_11, gridSize1*sizeof(int), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_sm_12, d_sm_12, gridSize1*sizeof(int), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_sm_21, d_sm_21, gridSize2*sizeof(int), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(h_sm_22, d_sm_22, gridSize2*sizeof(int), cudaMemcpyDeviceToHost));
printf("Kernel 1: gridSize = %i; blockSize = %i\n", gridSize1, blockSize1);
printf("Kernel 2: gridSize = %i; blockSize = %i\n", gridSize2, blockSize2);
for (int i=0; i<gridSize1; i++) {
printf("Kernel 1 - Data 1: blockNumber = %i; SMID = %d\n", i, h_sm_11[i]);
printf("Kernel 1 - Data 2: blockNumber = %i; SMID = %d\n", i, h_sm_12[i]);
}
for (int i=0; i<gridSize2; i++) {
printf("Kernel 2 - Data 1: blockNumber = %i; SMID = %d\n", i, h_sm_21[i]);
printf("Kernel 2 - Data 2: blockNumber = %i; SMID = %d\n", i, h_sm_22[i]);
}
cudaDeviceReset();
return 0;
}
内核时序N = 100
和N = 10000
N = 100
kernel_1 0.003ms
kernel_2 0.005ms
N = 10000
kernel_1 0.011ms
kernel_2 0.053ms
因此,内核 1 在计算上比内核 2 更昂贵。
结果N = 100
Kernel 1: gridSize = 1; blockSize = 100
Kernel 2: gridSize = 1; blockSize = 100
Kernel 1 - Data 1: blockNumber = 0; SMID = 0
Kernel 1 - Data 2: blockNumber = 0; SMID = 1
Kernel 2 - Data 1: blockNumber = 0; SMID = 0
Kernel 2 - Data 2: blockNumber = 0; SMID = 1
在这种情况下,每个内核只用一个块启动,这就是时间线。
如您所见,发生了重叠。通过查看上述结果,调度程序将两个调用的单个块并行传递到内核 1 到两个可用的 SM,然后对内核 2 执行相同的操作。这似乎是发生重叠的主要原因。
结果N = 10000
Kernel 1: gridSize = 14; blockSize = 768
Kernel 2: gridSize = 10; blockSize = 1024
Kernel 1 - Data 1: blockNumber = 0; SMID = 0
Kernel 1 - Data 2: blockNumber = 0; SMID = 1
Kernel 1 - Data 1: blockNumber = 1; SMID = 1
Kernel 1 - Data 2: blockNumber = 1; SMID = 0
Kernel 1 - Data 1: blockNumber = 2; SMID = 0
Kernel 1 - Data 2: blockNumber = 2; SMID = 1
Kernel 1 - Data 1: blockNumber = 3; SMID = 1
Kernel 1 - Data 2: blockNumber = 3; SMID = 0
Kernel 1 - Data 1: blockNumber = 4; SMID = 0
Kernel 1 - Data 2: blockNumber = 4; SMID = 1
Kernel 1 - Data 1: blockNumber = 5; SMID = 1
Kernel 1 - Data 2: blockNumber = 5; SMID = 0
Kernel 1 - Data 1: blockNumber = 6; SMID = 0
Kernel 1 - Data 2: blockNumber = 6; SMID = 0
Kernel 1 - Data 1: blockNumber = 7; SMID = 1
Kernel 1 - Data 2: blockNumber = 7; SMID = 1
Kernel 1 - Data 1: blockNumber = 8; SMID = 0
Kernel 1 - Data 2: blockNumber = 8; SMID = 1
Kernel 1 - Data 1: blockNumber = 9; SMID = 1
Kernel 1 - Data 2: blockNumber = 9; SMID = 0
Kernel 1 - Data 1: blockNumber = 10; SMID = 0
Kernel 1 - Data 2: blockNumber = 10; SMID = 0
Kernel 1 - Data 1: blockNumber = 11; SMID = 1
Kernel 1 - Data 2: blockNumber = 11; SMID = 1
Kernel 1 - Data 1: blockNumber = 12; SMID = 0
Kernel 1 - Data 2: blockNumber = 12; SMID = 1
Kernel 1 - Data 1: blockNumber = 13; SMID = 1
Kernel 1 - Data 2: blockNumber = 13; SMID = 0
Kernel 2 - Data 1: blockNumber = 0; SMID = 0
Kernel 2 - Data 2: blockNumber = 0; SMID = 0
Kernel 2 - Data 1: blockNumber = 1; SMID = 1
Kernel 2 - Data 2: blockNumber = 1; SMID = 1
Kernel 2 - Data 1: blockNumber = 2; SMID = 1
Kernel 2 - Data 2: blockNumber = 2; SMID = 0
Kernel 2 - Data 1: blockNumber = 3; SMID = 0
Kernel 2 - Data 2: blockNumber = 3; SMID = 1
Kernel 2 - Data 1: blockNumber = 4; SMID = 1
Kernel 2 - Data 2: blockNumber = 4; SMID = 0
Kernel 2 - Data 1: blockNumber = 5; SMID = 0
Kernel 2 - Data 2: blockNumber = 5; SMID = 1
Kernel 2 - Data 1: blockNumber = 6; SMID = 1
Kernel 2 - Data 2: blockNumber = 6; SMID = 0
Kernel 2 - Data 1: blockNumber = 7; SMID = 0
Kernel 2 - Data 2: blockNumber = 7; SMID = 1
Kernel 2 - Data 1: blockNumber = 8; SMID = 1
Kernel 2 - Data 2: blockNumber = 8; SMID = 0
Kernel 2 - Data 1: blockNumber = 9; SMID = 0
Kernel 2 - Data 2: blockNumber = 9; SMID = 1
这是时间线:
在这种情况下,不会发生重叠。根据上述结果,这并不意味着两个 SM 没有同时被利用,而是(我认为)由于要启动的块数量较多,分配两个不同内核的块或相同的两个块内核在性能方面没有太大区别,因此调度程序选择第二个选项。
我已经测试过,考虑到每个线程完成的工作更多,行为保持不变。