减少可能是您想要的:
我已将您的一些符号组合并为 A、B、C(不需要,使其适合屏幕)
Reduce[{dist^2 == xstep^2 + (A)^2 &&
dist^2 == (C - NC xstep)^2 + (B - dist/2)^2 , {xstep, dist}]]
这会在一系列条件下产生相当大的输出。
如果您知道排除各种退化情况的约束,则有助于指定(我编造了这些)
$Assumptions = B != 0 && B^2 != 3 C^2 && NC^2 != 3/4;
注意 $Assumptions 由 Simplify 使用,但您需要将其显式添加到 Reduce 表达式中。
Simplify[Reduce[{dist^2 == xstep^2 + (A)^2 &&
dist^2 == (C - NC xstep)^2 + (B - dist/2)^2 && $Assumptions }, {xstep, dist}]]
输出..不要太笨拙.. Root 表达式包含您寻求的系数..
(xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 1] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 2] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 3] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 4]) &&
3 A^2 + 4 B dist + xstep (8 C NC + 3 xstep) ==
4 (B^2 + C^2 + NC^2 xstep^2)