42

我有带有 UTC 时间戳的数据。我想将此时间戳的时区转换为“美国/太平洋”,并将其作为分层索引添加到 pandas DataFrame。我已经能够将时间戳转换为索引,但是当我尝试将它作为列或索引添加回 DataFrame 时,它​​会丢失时区格式。

>>> import pandas as pd
>>> dat = pd.DataFrame({'label':['a', 'a', 'a', 'b', 'b', 'b'], 'datetime':['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], 'value':range(6)})
>>> dat.dtypes
#datetime    object
#label       object
#value        int64
#dtype: object

现在,如果我尝试直接转换系列,我会遇到错误。

>>> times = pd.to_datetime(dat['datetime'])
>>> times.tz_localize('UTC')
#Traceback (most recent call last):
#  File "<stdin>", line 1, in <module>
#  File "/Users/erikshilts/workspace/schedule-detection/python/pysched/env/lib/python2.7/site-packages/pandas/core/series.py", line 3170, in tz_localize
#    raise Exception('Cannot tz-localize non-time series')
#Exception: Cannot tz-localize non-time series

如果我将其转换为索引,那么我可以将其作为时间序列进行操作。请注意,索引现在具有太平洋时区。

>>> times_index = pd.Index(times)
>>> times_index_pacific = times_index.tz_localize('UTC').tz_convert('US/Pacific')
>>> times_index_pacific
#<class 'pandas.tseries.index.DatetimeIndex'>
#[2011-07-19 00:00:00, ..., 2011-07-19 02:00:00]
#Length: 6, Freq: None, Timezone: US/Pacific

但是,现在我在将索引添加回数据帧时遇到了问题,因为它失去了时区格式:

>>> dat_index = dat.set_index([dat['label'], times_index_pacific])
>>> dat_index
#                                      datetime label  value
#label                                                      
#a     2011-07-19 07:00:00  2011-07-19 07:00:00     a      0
#      2011-07-19 08:00:00  2011-07-19 08:00:00     a      1
#      2011-07-19 09:00:00  2011-07-19 09:00:00     a      2
#b     2011-07-19 07:00:00  2011-07-19 07:00:00     b      3
#      2011-07-19 08:00:00  2011-07-19 08:00:00     b      4
#      2011-07-19 09:00:00  2011-07-19 09:00:00     b      5

您会注意到索引回到了 UTC 时区,而不是转换后的太平洋时区。

如何更改时区并将其作为索引添加到 DataFrame?

4

4 回答 4

30

如果将其设置为索引,它会自动转换为索引:

In [11]: dat.index = pd.to_datetime(dat.pop('datetime'), utc=True)

In [12]: dat
Out[12]:
                    label  value
datetime
2011-07-19 07:00:00     a      0
2011-07-19 08:00:00     a      1
2011-07-19 09:00:00     a      2
2011-07-19 07:00:00     b      3
2011-07-19 08:00:00     b      4
2011-07-19 09:00:00     b      5

然后执行tz_localize

In [12]: dat.index = dat.index.tz_localize('UTC').tz_convert('US/Pacific')

In [13]: dat
Out[13]:
                          label  value
datetime
2011-07-19 00:00:00-07:00     a      0
2011-07-19 01:00:00-07:00     a      1
2011-07-19 02:00:00-07:00     a      2
2011-07-19 00:00:00-07:00     b      3
2011-07-19 01:00:00-07:00     b      4
2011-07-19 02:00:00-07:00     b      5

然后您可以将标签列附加到索引:

嗯,这绝对是一个错误!

In [14]: dat.set_index('label', append=True).swaplevel(0, 1)
Out[14]:
                           value
label datetime
a     2011-07-19 07:00:00      0
      2011-07-19 08:00:00      1
      2011-07-19 09:00:00      2
b     2011-07-19 07:00:00      3
      2011-07-19 08:00:00      4
      2011-07-19 09:00:00      5

一个 hacky 解决方法是直接转换 (datetime) 级别(当它已经是 MultiIndex 时):

In [15]: dat.index.levels[1] = dat.index.get_level_values(1).tz_localize('UTC').tz_convert('US/Pacific')

In [16]: dat1
Out[16]:
                                 value
label datetime
a     2011-07-19 00:00:00-07:00      0
      2011-07-19 01:00:00-07:00      1
      2011-07-19 02:00:00-07:00      2
b     2011-07-19 00:00:00-07:00      3
      2011-07-19 01:00:00-07:00      4
      2011-07-19 02:00:00-07:00      5
于 2013-06-18T01:24:42.940 回答
23

到目前为止,此问题已得到修复。例如,您现在可以调用:

dataframe.tz_localize('UTC', level=0)

但是,对于给定的示例,您必须调用它两次。(即,每个级别一次。)

于 2016-07-29T12:18:11.103 回答
2

在 pandas 0.13.1 中工作的另一种解决方法,解决了 FrozenList 无法分配问题:

index.levels = pandas.core.base.FrozenList([
    index.levels[0].tz_localize('UTC').tz_convert(tz),
    index.levels[1].tz_localize('UTC').tz_convert(tz)
])

MultiIndex 在这个问题上苦苦挣扎,在许多其他条件下也失去了 tz。

于 2014-07-14T20:08:13.223 回答
0

该解决方法似乎不起作用,因为分层索引的索引级别似乎是不可变的(FrozenList 是不可变的)。

从单数索引开始并附加也不起作用。

创建一个转换为 Timestamp 并转换由 to_datetime() 返回的 Series 的每个成员的 lambda 函数也不起作用。

有没有办法创建时区感知系列,然后将它们插入数据框/使它们成为索引?

joined_event_df = joined_event_df.set_index(['pandasTime'])
joined_event_df.index = joined_event_df.index.get_level_values(1).tz_localize('UTC').tz_convert('US/Central')
# we have tz-awareness above this line
joined_event_df = joined_event_df.set_index('sequence', append = True)
# we lose tz-awareness in the index as soon as we add another index
joined_event_df = joined_event_df.swaplevel(0,1)
于 2014-05-30T00:11:45.783 回答