据我所知,答案是否定的。但是,您可以围绕 MKL 稀疏乘法例程构建自己的包装器。您询问了将两个稀疏矩阵相乘的问题。下面是一些包装代码,我用于将一个稀疏矩阵乘以一个密集向量,因此它应该不难适应(查看英特尔 MKL 参考中的 mkl_cspblas_dcsrgemm)。另外,请注意 scipy 数组的存储方式:默认为 coo,但 csr(或 csc)可能是更好的选择。我选择了 csr,但 MKL 支持大多数类型(只需调用相应的例程即可)。
据我所知,scipy 的默认值和 MKL 都是多线程的。通过更改OMP_NUM_THREADS
,我可以看到性能上的差异。
要使用下面的功能,如果您有最新版本的 MKL,只需确保您已LD_LIBRARY_PATHS
设置包含相关的 MKL 目录。对于旧版本,您需要构建一些特定的库。我在 python 中从 IntelMKL获得了我的信息
def SpMV_viaMKL( A, x ):
"""
Wrapper to Intel's SpMV
(Sparse Matrix-Vector multiply)
For medium-sized matrices, this is 4x faster
than scipy's default implementation
Stephen Becker, April 24 2014
stephen.beckr@gmail.com
"""
import numpy as np
import scipy.sparse as sparse
from ctypes import POINTER,c_void_p,c_int,c_char,c_double,byref,cdll
mkl = cdll.LoadLibrary("libmkl_rt.so")
SpMV = mkl.mkl_cspblas_dcsrgemv
# Dissecting the "cspblas_dcsrgemv" name:
# "c" - for "c-blas" like interface (as opposed to fortran)
# Also means expects sparse arrays to use 0-based indexing, which python does
# "sp" for sparse
# "d" for double-precision
# "csr" for compressed row format
# "ge" for "general", e.g., the matrix has no special structure such as symmetry
# "mv" for "matrix-vector" multiply
if not sparse.isspmatrix_csr(A):
raise Exception("Matrix must be in csr format")
(m,n) = A.shape
# The data of the matrix
data = A.data.ctypes.data_as(POINTER(c_double))
indptr = A.indptr.ctypes.data_as(POINTER(c_int))
indices = A.indices.ctypes.data_as(POINTER(c_int))
# Allocate output, using same conventions as input
nVectors = 1
if x.ndim is 1:
y = np.empty(m,dtype=np.double,order='F')
if x.size != n:
raise Exception("x must have n entries. x.size is %d, n is %d" % (x.size,n))
elif x.shape[1] is 1:
y = np.empty((m,1),dtype=np.double,order='F')
if x.shape[0] != n:
raise Exception("x must have n entries. x.size is %d, n is %d" % (x.size,n))
else:
nVectors = x.shape[1]
y = np.empty((m,nVectors),dtype=np.double,order='F')
if x.shape[0] != n:
raise Exception("x must have n entries. x.size is %d, n is %d" % (x.size,n))
# Check input
if x.dtype.type is not np.double:
x = x.astype(np.double,copy=True)
# Put it in column-major order, otherwise for nVectors > 1 this FAILS completely
if x.flags['F_CONTIGUOUS'] is not True:
x = x.copy(order='F')
if nVectors == 1:
np_x = x.ctypes.data_as(POINTER(c_double))
np_y = y.ctypes.data_as(POINTER(c_double))
# now call MKL. This returns the answer in np_y, which links to y
SpMV(byref(c_char("N")), byref(c_int(m)),data ,indptr, indices, np_x, np_y )
else:
for columns in xrange(nVectors):
xx = x[:,columns]
yy = y[:,columns]
np_x = xx.ctypes.data_as(POINTER(c_double))
np_y = yy.ctypes.data_as(POINTER(c_double))
SpMV(byref(c_char("N")), byref(c_int(m)),data,indptr, indices, np_x, np_y )
return y