0

我正在从具有各种 c("s_size","re​​ps") 的 c("x","y","density") 列的数据帧中对行进行二次采样。Reps = 复制,s_size = 从整个数据帧中二次采样的行数。

> head(data_xyz)
   x y density
1  6 1       0
2  7 1   17600
3  8 1   11200
4 12 1   14400
5 13 1       0
6 14 1    8000



 #Subsampling###################
    subsample_loop <- function(s_size, reps, int) {
      tm1 <- system.time( #start timer
    {
      subsample_bound = data.frame()
    #Perform Subsampling of the general 
    for (s_size in seq(1,s_size,int)){
      for (reps in 1:reps) {
        subsample <- sample.df.rows(s_size, data_xyz)
         assign(paste("sample" ,"_","n", s_size, "_", "r", reps , sep=""), subsample)
        subsample_replicate <- subsample[,] #temporary variable
        subsample_replicate <- cbind(subsample, rep(s_size,(length(subsample_replicate[,1]))),
                                     rep(reps,(length(subsample_replicate[,1]))))
        subsample_bound <- rbind(subsample_bound, subsample_replicate)

      }
    }
    }) #end timer
      colnames(subsample_bound) <- c("x","y","density","s_size","reps")
    subsample_bound
    } #end function

Here's the function call:

    source("R/functions.R")
    subsample_data <- subsample_loop(s_size=206, reps=5, int=10)

这是行子样本函数:

# Samples a number of rows in a dataframe, outputs a dataframe of the same # of columns
# df Data Frame
# N number of samples to be taken
sample.df.rows <- function (N, df, ...) 
  { 
    df[sample(nrow(df), N, replace=FALSE,...), ] 
  } 

这太慢了,我用应用函数尝试了几次,但没有运气。我将从 1:250 开始为每个 s_size 做大约 1,000-10,000 次重复。

让我知道你的想法!提前致谢。

==================================================== ======================= 更新编辑:从中采样的示例数据: https ://www.dropbox.com/s/47mpo36xh7lck0t/density.csv

Joran 在函数中的代码(在 source function.R 文件中):

foo <- function(i,j,data){
  res <- data[sample(nrow(data),i,replace = FALSE),]
  res$s_size <- i
  res$reps <- rep(j,i)
  res
}
resampling_custom <- function(dat, s_size, int, reps) {
  ss <- rep(seq(1,s_size,by = int),each = reps)
  id <- rep(seq_len(reps),times = s_size/int)
  out <- do.call(rbind,mapply(foo,i = ss,j = id,MoreArgs = list(data = dat),SIMPLIFY = FALSE))
}

调用函数

set.seed(2)
out <- resampling_custom(dat=retinal_xyz, s_size=206, int=5, reps=10)

输出数据,不幸的是带有此警告消息:

Warning message:
In mapply(foo, i = ss, j = id, MoreArgs = list(data = dat), SIMPLIFY = FALSE) :
  longer argument not a multiple of length of shorter
4

1 回答 1

3

我很少考虑实际优化这个,我只是专注于做一些至少合理的事情,同时匹配你的程序。

你的大问题是你正在通过rbindand增长对象cbind。基本上,只要您看到有人使用, or编写data.frame()c()扩展该对象,您就可以非常确定生成的代码本质上是执行所尝试任务的最慢的方法。rbindcbindc

这个版本快了大约 12 到 13 倍,我相信如果你认真考虑的话,你可以从中挤出更多:

s_size <- 200
int <- 10
reps <- 30

ss <- rep(seq(1,s_size,by = int),each = reps)
id <- rep(seq_len(reps),times = s_size/int)

foo <- function(i,j,data){
    res <- data[sample(nrow(data),i,replace = FALSE),]
    res$s_size <- i
    res$reps <- rep(j,i)
    res
}

out <- do.call(rbind,mapply(foo,i = ss,j = id,MoreArgs = list(data = dat),SIMPLIFY = FALSE))

R 最好的地方在于,这种方式不仅速度更快,而且代码更少。

于 2013-06-15T03:11:52.123 回答