3

我得到了以下程序,它几乎是 SDK 示例“简单分层纹理”。

// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

// includes, kernels
#include <cuda_runtime.h>

// includes, project
#include <helper_cuda.h>
#include <helper_functions.h>  // helper for shared that are common to CUDA SDK samples

#define EXIT_WAIVED 2

static char *sSDKname = "simpleLayeredTexture";

// includes, kernels
// declare texture reference for layered 2D float texture
// Note: The "dim" field in the texture reference template is now deprecated.
// Instead, please use a texture type macro such as cudaTextureType1D, etc.

typedef int TYPE;

texture<TYPE, cudaTextureType2DLayered> tex;

////////////////////////////////////////////////////////////////////////////////
//! Transform a layer of a layered 2D texture using texture lookups
//! @param g_odata  output data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void
transformKernel(TYPE *g_odata, int width, int height, int layer)
{
    // calculate this thread's data point
    unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

    // 0.5f offset and division are necessary to access the original data points
    // in the texture (such that bilinear interpolation will not be activated).
    // For details, see also CUDA Programming Guide, Appendix D
    float u = (x+0.5f) / (float) width;
    float v = (y+0.5f) / (float) height;

    // read from texture, do expected transformation and write to global memory
    TYPE sample = tex2DLayered(tex, u, v, layer);
    g_odata[layer*width*height + y*width + x] = sample;

    printf("Sample %d\n", sample);
}


////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main(int argc, char **argv)
{
    printf("[%s] - Starting...\n", sSDKname);

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    int devID = findCudaDevice(argc, (const char **)argv);

    bool bResult = true;

    // get number of SMs on this GPU
    cudaDeviceProp deviceProps;

    checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
    printf("CUDA device [%s] has %d Multi-Processors ", deviceProps.name, deviceProps.multiProcessorCount);
    printf("SM %d.%d\n", deviceProps.major, deviceProps.minor);

    if (deviceProps.major < 2)
    {
        printf("%s requires SM >= 2.0 to support Texture Arrays.  Test will be waived... \n", sSDKname);
        cudaDeviceReset();
        exit(EXIT_SUCCESS);
    }

    // generate input data for layered texture
    unsigned int width=16, height=16, num_layers = 5;
    unsigned int size = width * height * num_layers * sizeof(TYPE);
    TYPE *h_data = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data[layer*width*height + i] = 15;//(float)i;
        }

    // this is the expected transformation of the input data (the expected output)
    TYPE *h_data_ref = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data_ref[layer*width*height + i] = h_data[layer*width*height + i];
        }

    // allocate device memory for result
    TYPE *d_data = NULL;
    checkCudaErrors(cudaMalloc((void **) &d_data, size));

    // allocate array and copy image data
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<TYPE>();
    cudaArray *cu_3darray;
    checkCudaErrors(cudaMalloc3DArray(&cu_3darray, &channelDesc, make_cudaExtent(width, height, num_layers), cudaArrayLayered));
    cudaMemcpy3DParms myparms = {0};
    myparms.srcPos = make_cudaPos(0,0,0);
    myparms.dstPos = make_cudaPos(0,0,0);
    myparms.srcPtr = make_cudaPitchedPtr(h_data, width * sizeof(TYPE), width, height);
    myparms.dstArray = cu_3darray;
    myparms.extent = make_cudaExtent(width, height, num_layers);
    myparms.kind = cudaMemcpyHostToDevice;
    checkCudaErrors(cudaMemcpy3D(&myparms));

    // set texture parameters
    tex.addressMode[0] = cudaAddressModeWrap;
    tex.addressMode[1] = cudaAddressModeWrap;
//    tex.filterMode = cudaFilterModeLinear;
    tex.filterMode = cudaFilterModePoint;
    tex.normalized = true;  // access with normalized texture coordinates

    // Bind the array to the texture
    checkCudaErrors(cudaBindTextureToArray(tex, cu_3darray, channelDesc));

    dim3 dimBlock(8, 8, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

    printf("Covering 2D data array of %d x %d: Grid size is %d x %d, each block has 8 x 8 threads\n",
           width, height, dimGrid.x, dimGrid.y);

    transformKernel<<< dimGrid, dimBlock >>>(d_data, width, height, 0);  // warmup (for better timing)

    // check if kernel execution generated an error
    getLastCudaError("warmup Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());

    StopWatchInterface *timer = NULL;
    sdkCreateTimer(&timer);
    sdkStartTimer(&timer);

    // execute the kernel
    for (unsigned int layer = 0; layer < num_layers; layer++)
        transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, layer);

    // check if kernel execution generated an error
    getLastCudaError("Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());
    sdkStopTimer(&timer);
    printf("Processing time: %.3f msec\n", sdkGetTimerValue(&timer));
    printf("%.2f Mtexlookups/sec\n", (width *height *num_layers / (sdkGetTimerValue(&timer) / 1000.0f) / 1e6));
    sdkDeleteTimer(&timer);

    // allocate mem for the result on host side
    TYPE *h_odata = (TYPE *) malloc(size);
    // copy result from device to host
    checkCudaErrors(cudaMemcpy(h_odata, d_data, size, cudaMemcpyDeviceToHost));

    printf("Comparing kernel output to expected data\n");

#define MIN_EPSILON_ERROR 5e-3f
    bResult = compareData(h_odata, h_data_ref, width*height*num_layers, MIN_EPSILON_ERROR, 0.0f);

    printf("Host sample: %d == %d\n", h_data_ref[0], h_odata[0]);

    // cleanup memory
    free(h_data);
    free(h_data_ref);
    free(h_odata);

    checkCudaErrors(cudaFree(d_data));
    checkCudaErrors(cudaFreeArray(cu_3darray));

    cudaDeviceReset();

    if (bResult)
        printf("Success!");
    else
        printf("Failure!");

    exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
}

如果我使用 int(或 uint)作为 TYPE,则输出是正确的。对于浮点数,它会产生错误的结果,即始终为 0(尽管 SDK compareData 函数说一切都很好!?)。我开始相信 CUDA 中存在错误。我在开普勒 K20 上使用 5.0 版。

任何建议和测试结果表示赞赏。代码应该可以按原样运行。

在此先感谢,本

编辑:操作系统是 Linux (Ubuntu 12.04.2 LTS) x86_64 3.2.0-38-generic

4

1 回答 1

1

这里的问题是,如果你只改变这个:

typedef int TYPE;

对此:

typedef float TYPE;

那么内核中的这一行不再正确:

printf("Sample %d\n", sample);
               ^^

因为printf格式说明符%d对于float类型不正确。如果将该说明符更改为%f,则会得到预期的输出:

$ cat t1519.cu
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

// includes, kernels
#include <cuda_runtime.h>

// includes, project
#include <helper_cuda.h>
#include <helper_functions.h>  // helper for shared that are common to CUDA SDK samples

#define EXIT_WAIVED 2

static char *sSDKname = "simpleLayeredTexture";

// includes, kernels
// declare texture reference for layered 2D float texture
// Note: The "dim" field in the texture reference template is now deprecated.
// Instead, please use a texture type macro such as cudaTextureType1D, etc.

typedef float TYPE;

texture<TYPE, cudaTextureType2DLayered> tex;

////////////////////////////////////////////////////////////////////////////////
//! Transform a layer of a layered 2D texture using texture lookups
//! @param g_odata  output data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void
transformKernel(TYPE *g_odata, int width, int height, int layer)
{
    // calculate this thread's data point
    unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

    // 0.5f offset and division are necessary to access the original data points
    // in the texture (such that bilinear interpolation will not be activated).
    // For details, see also CUDA Programming Guide, Appendix D
    float u = (x+0.5f) / (float) width;
    float v = (y+0.5f) / (float) height;

    // read from texture, do expected transformation and write to global memory
    TYPE sample = tex2DLayered(tex, u, v, layer);
    g_odata[layer*width*height + y*width + x] = sample;

    printf("Sample %f\n", sample);
}


////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main(int argc, char **argv)
{
    printf("[%s] - Starting...\n", sSDKname);

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    int devID = findCudaDevice(argc, (const char **)argv);

    bool bResult = true;

    // get number of SMs on this GPU
    cudaDeviceProp deviceProps;

    checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
    printf("CUDA device [%s] has %d Multi-Processors ", deviceProps.name, deviceProps.multiProcessorCount);
    printf("SM %d.%d\n", deviceProps.major, deviceProps.minor);

    if (deviceProps.major < 2)
    {
        printf("%s requires SM >= 2.0 to support Texture Arrays.  Test will be waived... \n", sSDKname);
        cudaDeviceReset();
        exit(EXIT_SUCCESS);
    }

    // generate input data for layered texture
    unsigned int width=16, height=16, num_layers = 5;
    unsigned int size = width * height * num_layers * sizeof(TYPE);
    TYPE *h_data = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data[layer*width*height + i] = 15;//(float)i;
        }

    // this is the expected transformation of the input data (the expected output)
    TYPE *h_data_ref = (TYPE *) malloc(size);

    for (unsigned int layer = 0; layer < num_layers; layer++)
        for (int i = 0; i < (int)(width * height); i++)
        {
            h_data_ref[layer*width*height + i] = h_data[layer*width*height + i];
        }

    // allocate device memory for result
    TYPE *d_data = NULL;
    checkCudaErrors(cudaMalloc((void **) &d_data, size));

    // allocate array and copy image data
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<TYPE>();
    cudaArray *cu_3darray;
    checkCudaErrors(cudaMalloc3DArray(&cu_3darray, &channelDesc, make_cudaExtent(width, height, num_layers), cudaArrayLayered));
    cudaMemcpy3DParms myparms = {0};
    myparms.srcPos = make_cudaPos(0,0,0);
    myparms.dstPos = make_cudaPos(0,0,0);
    myparms.srcPtr = make_cudaPitchedPtr(h_data, width * sizeof(TYPE), width, height);
    myparms.dstArray = cu_3darray;
    myparms.extent = make_cudaExtent(width, height, num_layers);
    myparms.kind = cudaMemcpyHostToDevice;
    checkCudaErrors(cudaMemcpy3D(&myparms));

    // set texture parameters
    tex.addressMode[0] = cudaAddressModeWrap;
    tex.addressMode[1] = cudaAddressModeWrap;
//    tex.filterMode = cudaFilterModeLinear;
    tex.filterMode = cudaFilterModePoint;
    tex.normalized = true;  // access with normalized texture coordinates

    // Bind the array to the texture
    checkCudaErrors(cudaBindTextureToArray(tex, cu_3darray, channelDesc));

    dim3 dimBlock(8, 8, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

    printf("Covering 2D data array of %d x %d: Grid size is %d x %d, each block has 8 x 8 threads\n",
           width, height, dimGrid.x, dimGrid.y);

    transformKernel<<< dimGrid, dimBlock >>>(d_data, width, height, 0);  // warmup (for better timing)

    // check if kernel execution generated an error
    getLastCudaError("warmup Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());

    StopWatchInterface *timer = NULL;
    sdkCreateTimer(&timer);
    sdkStartTimer(&timer);

    // execute the kernel
    for (unsigned int layer = 0; layer < num_layers; layer++)
        transformKernel<<< dimGrid, dimBlock, 0 >>>(d_data, width, height, layer);

    // check if kernel execution generated an error
    getLastCudaError("Kernel execution failed");

    checkCudaErrors(cudaDeviceSynchronize());
    sdkStopTimer(&timer);
    printf("Processing time: %.3f msec\n", sdkGetTimerValue(&timer));
    printf("%.2f Mtexlookups/sec\n", (width *height *num_layers / (sdkGetTimerValue(&timer) / 1000.0f) / 1e6));
    sdkDeleteTimer(&timer);

    // allocate mem for the result on host side
    TYPE *h_odata = (TYPE *) malloc(size);
    // copy result from device to host
    checkCudaErrors(cudaMemcpy(h_odata, d_data, size, cudaMemcpyDeviceToHost));

    printf("Comparing kernel output to expected data\n");

#define MIN_EPSILON_ERROR 5e-3f
    bResult = compareData(h_odata, h_data_ref, width*height*num_layers, MIN_EPSILON_ERROR, 0.0f);

    printf("Host sample: %d == %d\n", h_data_ref[0], h_odata[0]);

    // cleanup memory
    free(h_data);
    free(h_data_ref);
    free(h_odata);

    checkCudaErrors(cudaFree(d_data));
    checkCudaErrors(cudaFreeArray(cu_3darray));

    cudaDeviceReset();

    if (bResult)
        printf("Success!");
    else
        printf("Failure!");

    exit(bResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
$ nvcc -I/usr/local/cuda/samples/common/inc t1519.cu -o t1519
t1519.cu(15): warning: conversion from a string literal to "char *" is deprecated

t1519.cu(15): warning: conversion from a string literal to "char *" is deprecated

[user2@dc10 misc]$ cuda-memcheck ./t1519
========= CUDA-MEMCHECK
[simpleLayeredTexture] - Starting...
GPU Device 0: "Tesla V100-PCIE-32GB" with compute capability 7.0

CUDA device [Tesla V100-PCIE-32GB] has 80 Multi-Processors SM 7.0
Covering 2D data array of 16 x 16: Grid size is 2 x 2, each block has 8 x 8 threads
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
Sample 15.000000
...
Sample 15.000000
Sample 15.000000
Sample 15.000000
Processing time: 13.991 msec
0.09 Mtexlookups/sec
Comparing kernel output to expected data
Host sample: 8964432 == 1
Success!========= ERROR SUMMARY: 0 errors
$

请注意,最终的输出行仍然不正确,因为我没有在printf那里修改不正确的格式说明符:

printf("Host sample: %d == %d\n", h_data_ref[0], h_odata[0]);
于 2019-09-28T21:29:01.443 回答