157

向对象添加一行的简单任务pandas.DataFrame似乎很难完成。有 3 个与此相关的 stackoverflow 问题,没有一个给出有效的答案。

这就是我想要做的。我有一个 DataFrame,我已经知道它的形状以及行和列的名称。

>>> df = pandas.DataFrame(columns=['a','b','c','d'], index=['x','y','z'])
>>> df
     a    b    c    d
x  NaN  NaN  NaN  NaN
y  NaN  NaN  NaN  NaN
z  NaN  NaN  NaN  NaN

现在,我有一个函数可以迭代地计算行的值。如何用字典或 a 填写其中一行pandas.Series?以下是失败的各种尝试:

>>> y = {'a':1, 'b':5, 'c':2, 'd':3} 
>>> df['y'] = y
AssertionError: Length of values does not match length of index

显然它试图添加一列而不是一行。

>>> y = {'a':1, 'b':5, 'c':2, 'd':3} 
>>> df.join(y)
AttributeError: 'builtin_function_or_method' object has no attribute 'is_unique'

非常无信息的错误消息。

>>> y = {'a':1, 'b':5, 'c':2, 'd':3} 
>>> df.set_value(index='y', value=y)
TypeError: set_value() takes exactly 4 arguments (3 given)

显然,这仅用于在数据框中设置单个值。

>>> y = {'a':1, 'b':5, 'c':2, 'd':3} 
>>> df.append(y)
Exception: Can only append a Series if ignore_index=True

好吧,我不想忽略索引,否则结果如下:

>>> df.append(y, ignore_index=True)
     a    b    c    d
0  NaN  NaN  NaN  NaN
1  NaN  NaN  NaN  NaN
2  NaN  NaN  NaN  NaN
3    1    5    2    3

它确实将列名与值对齐,但丢失了行标签。

>>> y = {'a':1, 'b':5, 'c':2, 'd':3} 
>>> df.ix['y'] = y
>>> df
                                  a                                 b  \
x                               NaN                               NaN
y  {'a': 1, 'c': 2, 'b': 5, 'd': 3}  {'a': 1, 'c': 2, 'b': 5, 'd': 3}
z                               NaN                               NaN

                                  c                                 d
x                               NaN                               NaN
y  {'a': 1, 'c': 2, 'b': 5, 'd': 3}  {'a': 1, 'c': 2, 'b': 5, 'd': 3}
z                               NaN                               NaN

那也惨败。

你是怎么做到的 ?

4

5 回答 5

113

df['y']将设置一列

因为你想设置一行,所以使用.loc

请注意,.ix这里是等效的,您的失败是因为您尝试为该行的每个元素分配一个字典,这y可能不是您想要的;转换为系列告诉熊猫您要对齐输入(例如,您不必指定所有元素)

In [6]: import pandas as pd

In [7]: df = pd.DataFrame(columns=['a','b','c','d'], index=['x','y','z'])

In [8]: df.loc['y'] = pd.Series({'a':1, 'b':5, 'c':2, 'd':3})

In [9]: df
Out[9]: 
     a    b    c    d
x  NaN  NaN  NaN  NaN
y    1    5    2    3
z  NaN  NaN  NaN  NaN
于 2013-06-13T16:19:28.230 回答
95

我的方法是,但我不能保证这是最快的解决方案。

df = pd.DataFrame(columns=["firstname", "lastname"])
df = df.append({
     "firstname": "John",
     "lastname":  "Johny"
      }, ignore_index=True)
于 2017-03-16T15:00:51.587 回答
41

这是一个更简单的版本

import pandas as pd
df = pd.DataFrame(columns=('col1', 'col2', 'col3'))
for i in range(5):
   df.loc[i] = ['<some value for first>','<some value for second>','<some value for third>']`
于 2016-11-09T07:25:57.013 回答
32

如果您的输入行是列表而不是字典,那么以下是一个简单的解决方案:

import pandas as pd
list_of_lists = []
list_of_lists.append([1,2,3])
list_of_lists.append([4,5,6])

pd.DataFrame(list_of_lists, columns=['A', 'B', 'C'])
#    A  B  C
# 0  1  2  3
# 1  4  5  6
于 2017-08-03T21:46:55.563 回答
1

代码背后的逻辑非常简单直接

使用字典制作 1 行的 df

然后创建一个形状为 (1, 4) 的 df,它只包含 NaN 并且具有与字典键相同的列

然后将一个 nan df 与 dict df 连接,然后连接另一个 nan df

import pandas as pd
import numpy as np

raw_datav = {'a':1, 'b':5, 'c':2, 'd':3} 

datav_df = pd.DataFrame(raw_datav, index=[0])

nan_df = pd.DataFrame([[np.nan]*4], columns=raw_datav.keys())

df = pd.concat([nan_df, datav_df, nan_df], ignore_index=True)

df.index = ["x", "y", "z"]

print(df)

a    b    c    d
x  NaN  NaN  NaN  NaN
y  1.0  5.0  2.0  3.0
z  NaN  NaN  NaN  NaN

[Program finished]
于 2021-06-08T17:40:01.043 回答