考虑以下两段代码,第一段是 C 版本:
void __attribute__((no_inline)) proj(uint8_t * line, uint16_t length)
{
uint16_t i;
int16_t tmp;
for(i=HPHD_MARGIN; i<length-HPHD_MARGIN; i++) {
tmp = line[i-3] - 4*line[i-2] + 5*line[i-1] - 5*line[i+1] + 4*line[i+2] - line[i+3];
hphd_temp[i]=ABS(tmp);
}
}
第二个是使用霓虹内在函数的相同功能(边框除外)
void __attribute__((no_inline)) proj_neon(uint8_t * line, uint16_t length)
{
int i;
uint8x8_t b0b7, b8b15, p1p8,p2p9,p4p11,p5p12,p6p13, m4, m5;
uint16x8_t result;
m4 = vdup_n_u8(4);
m5 = vdup_n_u8(5);
b0b7 = vld1_u8(line);
for(i = 0; i < length - 16; i+=8) {
b8b15 = vld1_u8(line + i + 8);
p1p8 = vext_u8(b0b7,b8b15, 1);
p2p9 = vext_u8(b0b7,b8b15, 2);
p4p11 = vext_u8(b0b7,b8b15, 4);
p5p12 = vext_u8(b0b7,b8b15, 5);
p6p13 = vext_u8(b0b7,b8b15, 6);
result = vsubl_u8(b0b7, p6p13); //p[-3]
result = vmlal_u8(result, p2p9, m5); // +5 * p[-1];
result = vmlal_u8(result, p5p12, m4);// +4 * p[1];
result = vmlsl_u8(result, p1p8, m4); //-4 * p[-2];
result = vmlsl_u8(result, p4p11, m5);// -5 * p[1];
vst1q_s16(hphd_temp + i + 3, vabsq_s16(vreinterpretq_s16_u16(result)));
b0b7 = b8b15;
}
/* todo : remaining pixel */
}
我对性能提升感到失望:大约是 10 - 15%。如果我查看生成的程序集:
- C 版本转换为 108 指令循环
- Neon 版本转换为 72 条指令循环。
但是,neon 代码中的一个循环计算的数据量是通过 C 循环的一个迭代的 8 倍,因此应该会看到显着的改进。
您对两个版本之间的微小差异有任何解释吗?
附加细节:测试数据是 10 Mpix 图像,C 版本的计算时间约为 2 秒。
CPU : ARM 皮质 a8