0

我尝试使用 Leastsq 来拟合一条非常简单的曲线。但是,其解决方案并未优化。谁能给我一些建议?下面是我的代码:

from scipy import optimize
import numpy as np

hl_obs = np.array([10.0, 23.0, 20.0])
ph=np.array([5.0,7.0,9.0])

tp=60

def residuals(k_abn, ph, tp, hl_obs):
        hr=np.log(2)/(hl_obs*24.0)
        ph_adj=6013.79/(tp+273.15) + 23.6521*np.log10(tp+273.15)-64.7013
        err = peval(k_abn, ph, ph_adj)-hr
        return err

def peval(k_abn, ph, ph_adj):
    temp= k_abn[0]*np.power(10,-ph) + k_abn[1] + k_abn[2]*np.power(10,(-ph_adj + ph))
    return temp

k_abn =np.array([1, 0, 0])

from scipy.optimize import leastsq
p,ier = leastsq(residuals, k_abn, args=(hl_obs, ph, tp), maxfev=2000000)
print p, ier

从 EXCEL 的求解器中,我知道解应该是k_abn=[165, 0.001237578, 2.14]. 一旦我将 Excel 的解决方案提供给function peval,它就会生成正确的答案......

peval([165,0.001238,2.14], 5.0, 13.01573)=0.002888113
peval([165,0.001238,2.14], 7.0, 13.01573)=0.001255701
peval([165,0.001238,2.14], 9.0, 13.01573)=0.001444057

另外,我尝试使用epsfcn=np.finfo(np.float32).eps Can有人给我一些建议来提高精度吗?谢谢!

4

1 回答 1

2

如果您以正确的顺序获得 args:

p,ier = leastsq(residuals, k_abn, args=(ph, tp, hl_obs), maxfev=2000000)

你得到结果:

[  1.65096852e+02   1.23712405e-03   2.14392540e+00]
于 2013-06-06T02:14:13.220 回答