6

我已经在 CUDA 中构建了一个基本内核来执行两个复向量的元素向量向量乘法。内核代码插入在 ( multiplyElementwise) 下方。它工作正常,但由于我注意到其他看似简单的操作(如缩放矢量)在 CUBLAS 或 CULA 等库中进行了优化,我想知道是否可以通过库调用替换我的代码?令我惊讶的是,CUBLAS 和 CULA 都没有这个选项,我试图通过使其中一个向量成为对角矩阵向量乘积的对角线来伪造它,但结果真的很慢。

作为最后的手段,我尝试自己优化这段代码(见multiplyElementwiseFast下文),将两个向量加载到共享内存中,然后从那里开始工作,但这比我的原始代码慢。

所以我的问题:

  1. 是否有可以进行元素向量-向量乘法的库?
  2. 如果没有,我可以加速我的代码(multiplyElementwise)吗?

任何帮助将不胜感激!

__global__ void multiplyElementwise(cufftComplex* f0, cufftComplex* f1, int size)
{
    const int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < size)
    {
        float a, b, c, d;
        a = f0[i].x; 
        b = f0[i].y;
        c = f1[i].x; 
        d = f1[i].y;
        float k;
        k = a * (c + d);
        d =  d * (a + b);
        c =  c * (b - a);
        f0[i].x = k - d;
        f0[i].y = k + c;
    }
}

__global__ void multiplyElementwiseFast(cufftComplex* f0, cufftComplex* f1, int size)
{
    const int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < 4*size)
    {
        const int N = 256;
        const int thId = threadIdx.x / 4;
        const int rem4 = threadIdx.x % 4;
        const int i4 = i / 4;

        __shared__ float a[N];
        __shared__ float b[N];
        __shared__ float c[N];
        __shared__ float d[N];
        __shared__ float Re[N];
        __shared__ float Im[N];

        if (rem4 == 0)
        {
            a[thId] = f0[i4].x;
            Re[thId] = 0.f;
        }
        if (rem4 == 1)
        {
            b[thId] = f0[i4].y;
            Im[thId] = 0.f;
        }
        if (rem4 == 2)
            c[thId] = f1[i4].x;
        if (rem4 == 0)
            d[thId] = f1[i4].y;
        __syncthreads();

        if (rem4 == 0)
            atomicAdd(&(Re[thId]), a[thId]*c[thId]);        
        if (rem4 == 1)
            atomicAdd(&(Re[thId]), -b[thId]*d[thId]);
        if (rem4 == 2)
            atomicAdd(&(Im[thId]), b[thId]*c[thId]);
        if (rem4 == 3)
            atomicAdd(&(Im[thId]), a[thId]*d[thId]);
        __syncthreads();

        if (rem4 == 0)
            f0[i4].x = Re[thId];
        if (rem4 == 1)
            f0[i4].y = Im[thId];
    }
}        
4

2 回答 2

5

如果您要实现的是具有复数的简单元素乘积,那么您似乎确实在multiplyElementwise内核中执行了一些增加寄存器使用率的额外步骤。您尝试计算的是:

f0[i].x = a*c - b*d;
f0[i].y = a*d + b*c;

因为(a + ib)*(c + id) = (a*c - b*d) + i(a*d + b*c). 通过使用改进的复数乘法,您可以用 1 次乘法换取 3 次加法和一些额外的寄存器。这是否合理可能取决于您使用的硬件。例如,如果您的硬件支持FMA(融合乘加),那么这种优化可能效率不高。您应该考虑阅读这篇文档:“ Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs ”,它也解决了浮点精度的问题。

不过,您应该考虑使用Thrust。这个库提供了许多高级工具来操作主机和设备向量。您可以在此处查看一长串示例:https ://github.com/thrust/thrust/tree/master/examples 。这会让你的生活轻松很多。

更新代码

在您的情况下,您可以使用此示例并将其调整为以下内容:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <time.h>

struct ElementWiseProductBasic : public thrust::binary_function<float2,float2,float2>
{
    __host__ __device__
    float2 operator()(const float2& v1, const float2& v2) const
    {
        float2 res;
        res.x = v1.x * v2.x - v1.y * v2.y;
        res.y = v1.x * v2.y + v1.y * v2.x;
        return res;
    }
};

/**
 * See: http://www.embedded.com/design/embedded/4007256/Digital-Signal-Processing-Tricks--Fast-multiplication-of-complex-numbers%5D
 */
struct ElementWiseProductModified : public thrust::binary_function<float2,float2,float2>
{
    __host__ __device__
    float2 operator()(const float2& v1, const float2& v2) const
    {
        float2 res;
        float a, b, c, d, k;
        a = v1.x;
        b = v1.y;
        c = v2.x;
        d = v2.y;
        k = a * (c + d);
        d =  d * (a + b);
        c =  c * (b - a);
        res.x = k -d;
        res.y = k + c;
        return res;
    }
};

int get_random_int(int min, int max)
{
    return min + (rand() % (int)(max - min + 1));
}

thrust::host_vector<float2> init_vector(const size_t N)
{
    thrust::host_vector<float2> temp(N);
    for(size_t i = 0; i < N; i++)
    {
        temp[i].x = get_random_int(0, 10);
        temp[i].y = get_random_int(0, 10);
    }
    return temp;
}

int main(void)
{
    const size_t N = 100000;
    const bool compute_basic_product    = true;
    const bool compute_modified_product = true;

    srand(time(NULL));

    thrust::host_vector<float2>   h_A = init_vector(N);
    thrust::host_vector<float2>   h_B = init_vector(N);
    thrust::device_vector<float2> d_A = h_A;
    thrust::device_vector<float2> d_B = h_B;

    thrust::host_vector<float2> h_result(N);
    thrust::host_vector<float2> h_result_modified(N);

    if (compute_basic_product)
    {
        thrust::device_vector<float2> d_result(N);

        thrust::transform(d_A.begin(), d_A.end(),
                          d_B.begin(), d_result.begin(),
                          ElementWiseProductBasic());
        h_result = d_result;
    }

    if (compute_modified_product)
    {
        thrust::device_vector<float2> d_result_modified(N);

        thrust::transform(d_A.begin(), d_A.end(),
                          d_B.begin(), d_result_modified.begin(),
                          ElementWiseProductModified());
        h_result_modified = d_result_modified;
    }

    std::cout << std::fixed;
    for (size_t i = 0; i < 4; i++)
    {
        float2 a = h_A[i];
        float2 b = h_B[i];

        std::cout << "(" << a.x << "," << a.y << ")";
        std::cout << " * ";
        std::cout << "(" << b.x << "," << b.y << ")";

        if (compute_basic_product)
        {
            float2 prod = h_result[i];
            std::cout << " = ";
            std::cout << "(" << prod.x << "," << prod.y << ")";
        }

        if (compute_modified_product)
        {
            float2 prod_modified = h_result_modified[i];
            std::cout << " = ";
            std::cout << "(" << prod_modified.x << "," << prod_modified.y << ")";
        }
        std::cout << std::endl;
    }   

    return 0;
}

这将返回:

(6.000000,5.000000)  * (0.000000,1.000000)  = (-5.000000,6.000000)
(3.000000,2.000000)  * (0.000000,4.000000)  = (-8.000000,12.000000)
(2.000000,10.000000) * (10.000000,4.000000) = (-20.000000,108.000000)
(4.000000,8.000000)  * (10.000000,9.000000) = (-32.000000,116.000000)

然后,您可以比较两种不同乘法策略的时序,并选择最适合您的硬件的方法。

于 2013-06-03T15:51:49.570 回答
0

您可以使用 cublasZdgmm。

cublasStatus_t cublasZdgmm(cublasHandle_t handle, cublasSideMode_t mode,
                      int m, int n,
                      const cuDoubleComplex *A, int lda,
                      const cuDoubleComplex *x, int incx,
                      cuDoubleComplex *C, int ldc)
于 2015-01-25T16:02:44.150 回答