13

我尝试运行这一行:

knn(mydades.training[,-7],mydades.test[,-7],mydades.training[,7],k=5)

但我总是收到这个错误:

Error in knn(mydades.training[, -7], mydades.test[, -7], mydades.training[,  : 
  NA/NaN/Inf in foreign function call (arg 6)
In addition: Warning messages:
1: In knn(mydades.training[, -7], mydades.test[, -7], mydades.training[,  :
  NAs introduced by coercion
2: In knn(mydades.training[, -7], mydades.test[, -7], mydades.training[,  :
  NAs introduced by coercion

请问有什么想法吗?

PS:mydades.training 和 mydades.test 定义如下:

N <- nrow(mydades) 
permut <- sample(c(1:N),N,replace=FALSE)
ord <- order(permut)
mydades.shuffled <- mydades[ord,]
prop.train <- 1/3
NOMBRE <- round(prop.train*N)
mydades.training <- mydades.shuffled[1:NOMBRE,]
mydades.test <- mydades.shuffled[(NOMBRE+1):N,]
4

3 回答 3

30

我怀疑您的问题在于“mydades”中有非数字数据字段。错误行:

NA/NaN/Inf in foreign function call (arg 6)

让我怀疑对 C 语言实现的 knn 函数调用失败。R 中的许多函数实际上调用底层的、更高效的 C 实现,而不是仅在 R 中实现算法。如果您在 R 控制台中仅键入“knn”,则可以检查“knn”的 R 实现。存在以下行:

 Z <- .C(VR_knn, as.integer(k), as.integer(l), as.integer(ntr), 
        as.integer(nte), as.integer(p), as.double(train), as.integer(unclass(clf)), 
        as.double(test), res = integer(nte), pr = double(nte), 
        integer(nc + 1), as.integer(nc), as.integer(FALSE), as.integer(use.all))

其中 .C 表示我们使用提供的函数参数调用名为“VR_knn”的 C 函数。由于您有两个错误

NAs introduced by coercion

我认为两个 as.double/as.integer 调用失败,并引入了 NA 值。如果我们开始计算参数,第 6 个参数是:

as.double(train)

在以下情况下可能会失败:

# as.double can not translate text fields to doubles, they are coerced to NA-values:
> as.double("sometext")
[1] NA
Warning message:
NAs introduced by coercion
# while the following text is cast to double without an error:
> as.double("1.23")
[1] 1.23

您会得到两个强制错误,它们可能由“as.double(train)”和“as.double(test)”给出。由于您没有向我们提供有关“mydades”的确切细节,以下是我的一些最佳猜测(以及人工的多元正态分布数据):

library(MASS)
mydades <- mvrnorm(100, mu=c(1:6), Sigma=matrix(1:36, ncol=6))
mydades <- cbind(mydades, sample(LETTERS[1:5], 100, replace=TRUE))

# This breaks knn
mydades[3,4] <- Inf
# This breaks knn
mydades[4,3] <- -Inf
# These, however, do not introduce the coercion for NA-values error message

# This breaks knn and gives the same error; just some raw text
mydades[1,2] <- mydades[50,1] <- "foo"
mydades[100,3] <- "bar"

# ... or perhaps wrongly formatted exponential numbers?
mydades[1,1] <- "2.34EXP-05"

# ... or wrong decimal symbol?
mydades[3,3] <- "1,23" 
# should be 1.23, as R uses '.' as decimal symbol and not ','

# ... or most likely a whole column is non-numeric, since the error is given twice (as.double problem both in training AND test set)
mydades[,1] <- sample(letters[1:5],100,replace=TRUE)

我不会将数字数据和类标签都保存在一个矩阵中,也许您可​​以将数据拆分为:

mydadesnumeric <- mydades[,1:6] # 6 first columns
mydadesclasses <- mydades[,7]

使用调用

str(mydades); summary(mydades)

还可以帮助您/我们找到有问题的数据条目并将其更正为数字条目或省略非数字字段。

您提供的其余运行代码(破坏数据后):

N <- nrow(mydades) 
permut <- sample(c(1:N),N,replace=FALSE)
ord <- order(permut)
mydades.shuffled <- mydades[ord,]
prop.train <- 1/3
NOMBRE <- round(prop.train*N)
mydades.training <- mydades.shuffled[1:NOMBRE,]
mydades.test <- mydades.shuffled[(NOMBRE+1):N,]

# 7th column seems to be the class labels
knn(train=mydades.training[,-7],test=mydades.test[,-7],mydades.training[,7],k=5)
于 2013-06-02T02:24:03.833 回答
12

@Teemu 的回答很好。

由于这是一个广为人知的问题,我将从分析的角度给出相同的答案。

KNN 函数通过计算点之间的欧几里得距离对数据点进行分类。这是一个需要数字的数学计算。因此,KNN 中的所有变量都必须能够强制转换为数字。

KNN 的数据准备通常涉及三个任务:
(1) 固定所有 NA 或 "" 值
(2) 将所有因子转换为一组布尔值,一个对应于因子中的每个级别
(3) 将每个变量的值归一化为范围 0:1,因此变量的范围不会对距离测量产生过大的影响。

于 2016-07-15T13:26:59.433 回答
0

我还要指出,使用整数时该函数似乎失败了。在调用 knn 函数之前,我需要将所有内容转换为“num”类型。这包括目标特征,R 中的大多数方法都使用因子类型。因此, as.numeric(my_frame$target_feature) 是必需的。

于 2017-03-20T17:19:17.947 回答