以下是如何使用timeit 模块对 Python 函数进行基准测试的示例:
测试.py:
import itertools as IT
def count_regular():
if not hasattr(count_regular,"c"):
count_regular.c = -1
count_regular.c +=1
return count_regular.c
def counter_gen():
c = 0
while True:
yield c
c += 1
def using_count_regular(N):
return [count_regular() for i in range(N)]
def using_counter_gen(N):
counter = counter_gen()
return [next(counter) for i in range(N)]
def using_itertools(N):
count = IT.count()
return [next(count) for i in range(N)]
像这样运行python来计时功能:
% python -mtimeit -s'import test as t' 't.using_count_regular(1000)'
1000 loops, best of 3: 336 usec per loop
% python -mtimeit -s'import test as t' 't.using_counter_gen(1000)'
10000 loops, best of 3: 172 usec per loop
% python -mtimeit -s'import test as t' 't.using_itertools(1000)'
10000 loops, best of 3: 105 usec per loop
要进行更彻底的基准测试,请尝试不同的 值N
,但在这种情况下,我认为这无关紧要。
因此,正如您所料, usingitertools.count
比count_regular
or更快counter_gen
。