假设我有一个具有多个内核的 CPU,我想在其上找到哪些球体正在接触。每个球体连接的任何一组球体(即它们都接触该组中的至少一个球体)称为“组”,并将被组织成一个向量,在下面的示例中,“group_members” ”。为了实现这一点,我目前正在使用一个相当昂贵的操作,在概念上看起来像这样:
vector<Sphere*> unallocated_spheres = all_spheres; // start with a copy of all spheres
vector<vector<Sphere*>> group_sequence; // groups will be collected here
while (unallocated_spheres.size() > 0U) // each iteration of this will represent the creation of a new group
{
std::vector<Sphere*> group_members; // this will store all members of the current group
group_members.push_back(unallocated_spheres.back()); // start with the last sphere (pop_back requires less resources than erase)
unallocated_spheres.pop_back(); // it has been allocated to a group so remove it from the unallocated list
// compare each sphere in the new group to every other sphere, and continue to do so until no more spheres are added to the current group
for (size_t i = 0U; i != group_members.size(); ++i) // iterators would be unsuitable in this case
{
Sphere const * const sphere = group_members[i]; // the sphere to which all others will be compared to to check if they should be added to the group
auto it = unallocated_spheres.begin();
while (it != unallocated_spheres.end())
{
// check if the iterator sphere belongs to the same group
if ((*it)->IsTouching(sphere))
{
// it does belong to the same group; add it and remove it from the unallocated_spheres vector and repair iterators
group_members.push_back(*it);
it = unallocated_spheres.erase(it); // repair the iterator
}
else ++it; // if no others were found, increment iterator manually
}
}
group_sequence.push_back(group_members);
}
有没有人有任何建议来提高这段代码在墙上时间方面的效率?我的程序在这些循环中花费了很大一部分时间,任何关于如何在结构上改变它以使其更高效的建议都将不胜感激。
请注意,由于这些是球体,“IsTouching()”是一个非常快速的浮点运算(比较两个球体的位置和半径)。它看起来像这样(注意 x、y 和 z 是球体在欧几里得维度中的位置):
// input whether this cell is touching the input cell (or if they are the same cell; both return true)
bool const Sphere::IsTouching(Sphere const * const that) const
{
// Apply pythagoras' theorem in 3 dimensions
double const dx = this->x - that->x;
double const dy = this->y - that->y;
double const dz = this->z - that->z;
// get the sum of the radii of the two cells
double const rad_sum = this->radius + that->radius;
// to avoid taking the square root to get actual distances, we instead compare
// the square of the pythagorean distance with the square of the radii sum
return dx*dx + dy*dy + dz*dz < rad_sum*rad_sum;
}