2

我不知道如何创建自己的声音播放器,所以我选择使用 ChiliTomatoNoodle 框架中的一个。

然而,我遇到的问题是我有一个 180 秒的波形文件,它只播放第一秒左右。我该怎么做才能让它播放更长的时间?

声音.h:

#pragma once

#include <windows.h>
#include <mmsystem.h>
#include <dsound.h>
#include <stdio.h>

class DSound;

class Sound
{
    friend DSound;
public:
    Sound( const Sound& base );
    Sound();
    ~Sound();
    const Sound& operator=( const Sound& rhs );
    void Play( int attenuation = DSBVOLUME_MAX );
private:
    Sound( IDirectSoundBuffer8* pSecondaryBuffer );
private:
    IDirectSoundBuffer8* pBuffer;
};

class DSound
{
private:
    struct WaveHeaderType
    {
        char chunkId[4];
        unsigned long chunkSize;
        char format[4];
        char subChunkId[4];
        unsigned long subChunkSize;
        unsigned short audioFormat;
        unsigned short numChannels;
        unsigned long sampleRate;
        unsigned long bytesPerSecond;
        unsigned short blockAlign;
        unsigned short bitsPerSample;
        char dataChunkId[4];
        unsigned long dataSize;
    };
public:
    DSound( HWND hWnd );
    ~DSound();
    Sound CreateSound( char* wavFileName );
private:
    DSound();
private:    
    IDirectSound8* pDirectSound;
    IDirectSoundBuffer* pPrimaryBuffer;
};

声音.cpp:

#include "Sound.h"
#include <assert.h>

#pragma comment(lib, "dsound.lib")
#pragma comment(lib, "dxguid.lib")
#pragma comment(lib, "winmm.lib" )

DSound::DSound( HWND hWnd )
: pDirectSound( NULL ),
  pPrimaryBuffer( NULL )
{
    HRESULT result;
    DSBUFFERDESC bufferDesc;
    WAVEFORMATEX waveFormat;

    result = DirectSoundCreate8( NULL,&pDirectSound,NULL );
    assert( !FAILED( result ) );

    // Set the cooperative level to priority so the format of the primary sound buffer can be modified.
    result = pDirectSound->SetCooperativeLevel( hWnd,DSSCL_PRIORITY );
    assert( !FAILED( result ) );

    // Setup the primary buffer description.
    bufferDesc.dwSize = sizeof(DSBUFFERDESC);
    bufferDesc.dwFlags = DSBCAPS_PRIMARYBUFFER | DSBCAPS_CTRLVOLUME;
    bufferDesc.dwBufferBytes = 0;
    bufferDesc.dwReserved = 0;
    bufferDesc.lpwfxFormat = NULL;
    bufferDesc.guid3DAlgorithm = GUID_NULL;

    // Get control of the primary sound buffer on the default sound device.
    result = pDirectSound->CreateSoundBuffer( &bufferDesc,&pPrimaryBuffer,NULL );
    assert( !FAILED( result ) );

    // Setup the format of the primary sound bufffer.
    // In this case it is a .WAV file recorded at 44,100 samples per second in 16-bit stereo (cd audio format).
    waveFormat.wFormatTag = WAVE_FORMAT_PCM;
    waveFormat.nSamplesPerSec = 44100;
    waveFormat.wBitsPerSample = 16;
    waveFormat.nChannels = 2;
    waveFormat.nBlockAlign = (waveFormat.wBitsPerSample / 8) * waveFormat.nChannels;
    waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
    waveFormat.cbSize = 0;

    // Set the primary buffer to be the wave format specified.
    result = pPrimaryBuffer->SetFormat( &waveFormat );
    assert( !FAILED( result ) );
}

DSound::~DSound()
{
    if( pPrimaryBuffer )
    {
        pPrimaryBuffer->Release();
        pPrimaryBuffer = NULL;
    }
    if( pDirectSound )
    {
        pDirectSound->Release();
        pDirectSound = NULL;
    }
}

// must be 44.1k 16bit Stereo PCM Wave
Sound DSound::CreateSound( char* wavFileName )
{
    int error;
    FILE* filePtr;
    unsigned int count;
    WaveHeaderType waveFileHeader;
    WAVEFORMATEX waveFormat;
    DSBUFFERDESC bufferDesc;
    HRESULT result;
    IDirectSoundBuffer* tempBuffer;
    IDirectSoundBuffer8* pSecondaryBuffer;
    unsigned char* waveData;
    unsigned char* bufferPtr;
    unsigned long bufferSize;


    // Open the wave file in binary.
    error = fopen_s( &filePtr,wavFileName,"rb" );
    assert( error == 0 );

    // Read in the wave file header.
    count = fread( &waveFileHeader,sizeof( waveFileHeader ),1,filePtr );
    assert( count == 1 );

    // Check that the chunk ID is the RIFF format.
    assert( (waveFileHeader.chunkId[0] == 'R') && 
            (waveFileHeader.chunkId[1] == 'I') && 
            (waveFileHeader.chunkId[2] == 'F') && 
            (waveFileHeader.chunkId[3] == 'F') );

    // Check that the file format is the WAVE format.
    assert( (waveFileHeader.format[0] == 'W') && 
            (waveFileHeader.format[1] == 'A') &&
            (waveFileHeader.format[2] == 'V') &&
            (waveFileHeader.format[3] == 'E') );

    // Check that the sub chunk ID is the fmt format.
    assert( (waveFileHeader.subChunkId[0] == 'f') && 
            (waveFileHeader.subChunkId[1] == 'm') &&
            (waveFileHeader.subChunkId[2] == 't') && 
            (waveFileHeader.subChunkId[3] == ' ') );

    // Check that the audio format is WAVE_FORMAT_PCM.
    assert( waveFileHeader.audioFormat == WAVE_FORMAT_PCM );

    // Check that the wave file was recorded in stereo format.
    assert( waveFileHeader.numChannels == 2 );

    // Check that the wave file was recorded at a sample rate of 44.1 KHz.
    assert( waveFileHeader.sampleRate == 44100 );

    // Ensure that the wave file was recorded in 16 bit format.
    assert( waveFileHeader.bitsPerSample == 16 );

    // Check for the data chunk header.
    assert( (waveFileHeader.dataChunkId[0] == 'd') && 
            (waveFileHeader.dataChunkId[1] == 'a') &&
            (waveFileHeader.dataChunkId[2] == 't') &&
            (waveFileHeader.dataChunkId[3] == 'a') );

    // Set the wave format of secondary buffer that this wave file will be loaded onto.
    waveFormat.wFormatTag = WAVE_FORMAT_PCM;
    waveFormat.nSamplesPerSec = 44100;
    waveFormat.wBitsPerSample = 16;
    waveFormat.nChannels = 2;
    waveFormat.nBlockAlign = (waveFormat.wBitsPerSample / 8) * waveFormat.nChannels;
    waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
    waveFormat.cbSize = 0;

    // Set the buffer description of the secondary sound buffer that the wave file will be loaded onto.
    bufferDesc.dwSize = sizeof(DSBUFFERDESC);
    bufferDesc.dwFlags = DSBCAPS_CTRLVOLUME;
    bufferDesc.dwBufferBytes = waveFileHeader.dataSize;
    bufferDesc.dwReserved = 0;
    bufferDesc.lpwfxFormat = &waveFormat;
    bufferDesc.guid3DAlgorithm = GUID_NULL;

    // Create a temporary sound buffer with the specific buffer settings.
    result = pDirectSound->CreateSoundBuffer( &bufferDesc,&tempBuffer,NULL );
    assert( !FAILED( result ) );

    // Test the buffer format against the direct sound 8 interface and create the secondary buffer.
    result = tempBuffer->QueryInterface( IID_IDirectSoundBuffer8,(void**)&pSecondaryBuffer );
    assert( !FAILED( result ) );

    // Release the temporary buffer.
    tempBuffer->Release();
    tempBuffer = 0;

    // Move to the beginning of the wave data which starts at the end of the data chunk header.
    fseek( filePtr,sizeof(WaveHeaderType),SEEK_SET );

    // Create a temporary buffer to hold the wave file data.
    waveData = new unsigned char[ waveFileHeader.dataSize ];
    assert( waveData );

    // Read in the wave file data into the newly created buffer.
    count = fread( waveData,1,waveFileHeader.dataSize,filePtr );
    assert( count == waveFileHeader.dataSize);

    // Close the file once done reading.
    error = fclose( filePtr );
    assert( error == 0 );

    // Lock the secondary buffer to write wave data into it.
    result = pSecondaryBuffer->Lock( 0,waveFileHeader.dataSize,(void**)&bufferPtr,(DWORD*)&bufferSize,NULL,0,0 );
    assert( !FAILED( result ) );

    // Copy the wave data into the buffer.
    memcpy( bufferPtr,waveData,waveFileHeader.dataSize );

    // Unlock the secondary buffer after the data has been written to it.
    result = pSecondaryBuffer->Unlock( (void*)bufferPtr,bufferSize,NULL,0 );
    assert( !FAILED( result ) );

    // Release the wave data since it was copied into the secondary buffer.
    delete [] waveData;
    waveData = NULL;

    return Sound( pSecondaryBuffer );
}

Sound::Sound( IDirectSoundBuffer8* pSecondaryBuffer )
: pBuffer( pSecondaryBuffer )
{}

Sound::Sound()
: pBuffer( NULL )
{}

Sound::Sound( const Sound& base )
: pBuffer( base.pBuffer )
{
    pBuffer->AddRef();
}

Sound::~Sound()
{
    if( pBuffer )
    {
        pBuffer->Release();
        pBuffer = NULL;
    }
}

const Sound& Sound::operator=( const Sound& rhs )
{
    this->~Sound();
    pBuffer = rhs.pBuffer;
    pBuffer->AddRef();
    return rhs;
}

// attn is the attenuation value in units of 0.01 dB (larger 
// negative numbers give a quieter sound, 0 for full volume)
void Sound::Play( int attn )
{
    attn = max( attn,DSBVOLUME_MIN );
    HRESULT result;

    // check that we have a valid buffer
    assert( pBuffer != NULL );

    // Set position at the beginning of the sound buffer.
    result = pBuffer->SetCurrentPosition( 0 );
    assert( !FAILED( result ) );

    // Set volume of the buffer to attn
    result = pBuffer->SetVolume( attn );
    assert( !FAILED( result ) );

    // Play the contents of the secondary sound buffer.
    result = pBuffer->Play( 0,0,0 );
    assert( !FAILED( result ) );
}

提前感谢您的帮助!

4

2 回答 2

0

假设您有一个 .wav 文件,并且您正在按照以下方式加载声音文件:

yourSound = audio.CreateSound("fileName.WAV"); //Capslock on WAV
yourSound.Play();

随之而来的是标题中的 Sound 声明:

Sound yourSound;

现在因为您可能已经这样做了并且这不起作用它可能与您的文件有关,因为播放声音 160 秒+ 应该不是问题。

您是否使用 .WAV 文件作为声音?如果是这样,您是否碰巧转换了它(因为它可能是背景声音?)。如果您确实尝试使用此转换器进行转换:

转换器 MP3 -> WAV

请让我知道这是否有效!

于 2013-05-27T20:20:40.953 回答
0

您的缓冲区可能只够播放第一秒左右。您需要做的是设置“通知”。请参阅文档

通知是一种让音频硬件在到达缓冲区中的特定点时通知您的方法。

这个想法是在缓冲区的中间和缓冲区的末尾设置一个通知。当您从中间的通知中收到通知时,您会用更多数据填充缓冲区的前半部分。当您从最后收到通知时,您会用更多数据填充缓冲区的后半部分。这样,您可以使用单个缓冲区流式传输无限量的数据。

于 2014-01-13T17:51:46.457 回答