由于命名空间,我收到以下错误cpl
?我在下面包含了 Wavepacket.cpp 和 Vector.hpp。
obj\Debug\wavepacket.o||In function `Z10initializev':|
wavepacket.cpp|79|undefined reference to `cpl::Vector::Vector(int)'|
wavepacket.cpp|79|undefined reference to `cpl::Vector::operator=(cpl::Vector const&)'|
wavepacket.cpp|80|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|80|undefined reference to `cpl::ComplexVector::operator=(cpl::ComplexVector const&)'|
wavepacket.cpp|81|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|81|undefined reference to `cpl::ComplexVector::operator=(cpl::ComplexVector const&)'|
wavepacket.cpp|101|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|101|undefined reference to `cpl::ComplexVector::operator=(cpl::ComplexVector const&)'|
wavepacket.cpp|102|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|102|undefined reference to `cpl::ComplexVector::operator=(cpl::ComplexVector const&)'|
wavepacket.cpp|103|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|103|undefined reference to `cpl::ComplexVector::operator=(cpl::ComplexVector const&)'|
obj\Debug\wavepacket.o||In function `Z8timeStepv':|
wavepacket.cpp|124|undefined reference to `cpl::solveTridiagonalCyclic(cpl::ComplexVector&, cpl::ComplexVector&, cpl::ComplexVector&, std::complex<double>, std::complex<double>, cpl::ComplexVector&, cpl::ComplexVector&)'|
wavepacket.cpp|126|undefined reference to `cpl::solveTridiagonal(cpl::ComplexVector&, cpl::ComplexVector&, cpl::ComplexVector&, cpl::ComplexVector&, cpl::ComplexVector&)'|
obj\Debug\wavepacket.o||In function `_static_initialization_and_destruction_0':|
wavepacket.cpp|22|undefined reference to `cpl::Vector::Vector(int)'|
wavepacket.cpp|71|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|71|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|72|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|72|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
wavepacket.cpp|72|undefined reference to `cpl::ComplexVector::ComplexVector(int)'|
||=== Build finished: 20 errors, 0 warnings ===|
波包.cpp
#include <cmath>
#include <complex>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <string>
#include <sstream>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include "Vector.hpp"
const double pi = 4*std::atan(1.0);
double h_bar = 1; // natural units
double mass = 1; // natural units
// The spatial grid
int N = 200; // number of interior grid points
double L = 100; // system extends from x=0 to x=L
double h = L / (N + 1); // grid size
double tau = 1; // time step
cpl::Vector x; // coordinates of grid points
bool periodic = true; // false = oo potential, true = periodic
// The potential V(x)
double V0 = 1.0; // height of potential well
double Vwidth = 10; // width of potential well
double Vcenter = 0.75 * L; // center of potential well
bool gaussian; // false = step potential
double V(double x) {
double halfWidth = std::abs(0.5 * Vwidth);
if (gaussian) {
double dx = (x - Vcenter) / halfWidth;
return V0 * std::exp( - dx * dx / 2);
} else {
if (std::abs(x - Vcenter) <= halfWidth)
return V0;
else
return 0;
}
}
// Inital wave packet
double x0 = L / 4; // location of center
double E = 1; // average energy
double sigma0 = L / 10; // width of wave packet
double Norm_psi; // norm of psi
double k0; // average wavenumber
double velocity; // average velocity
void getInput() {
std::cout << "Time-dependent Schroedinger Equation\n";
std::cout << "Enter size of x region L = ";
std::cin >> L;
std::cout << "Enter number of grid points N = ";
std::cin >> N;
std::cout << "Enter integration time step tau = ";
std::cin >> tau;
std::cout << "Enter width of potential = ";
std::cin >> Vwidth;
std::cout << "Enter height of potential V0 = ";
std::cin >> V0;
std::cout << "Enter width of packet sigma = ";
std::cin >> sigma0;
std::cout << "Enter energy of packet E = ";
std::cin >> E;
}
double t; // time
cpl::ComplexVector psi, chi; // complex wavefunction
cpl::ComplexVector a, b, c; // to represent tridiagonal Q matrix
std::complex<double> alpha, beta; // corner elements of Q
void initialize () {
t = 0;
// reset vectors
x = cpl::Vector(N);
psi = cpl::ComplexVector(N);
chi = cpl::ComplexVector(N);
// reset the lattice
h = L / (N + 1);
for (int j = 0; j < N; j++)
x[j] = (j + 1) * h;
// inititalize the packet
k0 = std::sqrt(2*mass*E - h_bar*h_bar/2/sigma0/sigma0) / h_bar;
velocity = k0 / mass;
Norm_psi = 1 / std::sqrt(sigma0 * std::sqrt(pi));
for (int j = 0; j < N; j++) {
double expFactor = std::exp(-(x[j] - x0) * (x[j] - x0)
/ (2 * sigma0 * sigma0));
psi[j] = std::complex<double>(
Norm_psi * std::cos(k0 * x[j]) * expFactor,
Norm_psi * std::sin(k0 * x[j]) * expFactor);
}
// elements of tridiagonal matrix Q = (1/2)(1 + i tau H / (2 hbar))
a = cpl::ComplexVector(N);
b = cpl::ComplexVector(N);
c = cpl::ComplexVector(N);
for (int j = 0; j < N; j++) {
const std::complex<double> i(0.0, 1.0);
b[j] = 0.5 + i * tau / (4 * h_bar) *
(V(x[j]) + h_bar * h_bar / (mass * h * h));
a[j] = c[j] = - i * tau * h_bar / (8 * mass * h * h);
}
alpha = c[N-1];
beta = a[0];
}
double T = 5; // time to travel length L
double framesPerSec = 50; // animation rate for screen redraws
void timeStep() {
static std::clock_t clockStart;
static bool done;
if (!done) {
double t0 = t;
do {
if (periodic)
solveTridiagonalCyclic(a, b, c, alpha, beta, psi, chi);
else
solveTridiagonal(a, b, c, psi, chi);
for (int j = 0; j < N; j++)
psi[j] = chi[j] - psi[j];
t += tau;
} while (std::abs(velocity * (t - t0)) < L / T / framesPerSec);
done = true;
}
std::clock_t clockNow = std::clock();
double seconds = (clockNow - clockStart) / double(CLOCKS_PER_SEC);
if ( seconds < 1 / framesPerSec ) {
return;
} else {
clockStart = clockNow;
done = false;
}
glutPostRedisplay();
glFlush();
}
void drawText(const std::string& str, double x, double y) {
glRasterPos2d(x, y);
int len = str.find('\0');
for (int i = 0; i < len; i++)
glutBitmapCharacter(GLUT_BITMAP_HELVETICA_12, str[i]);
}
bool showRealImaginary; // false = probability only
void display() {
glClear(GL_COLOR_BUFFER_BIT);
if (showRealImaginary) {
glColor3f(0, 0, 1); // real part of psi blue
glBegin(GL_LINES);
for (int j = 1; j < N; j++) {
glVertex2d(x[j-1], psi[j-1].real());
glVertex2d(x[j], psi[j].real());
}
glEnd();
glColor3f(0, 1, 0); // imaginary part of psi green
glBegin(GL_LINES);
for (int j = 1; j < N; j++) {
glVertex2d(x[j-1], psi[j-1].imag());
glVertex2d(x[j], psi[j].imag());
}
glEnd();
}
glColor3f(1, 0, 0); // probability red
double pOld = psi[0].real() * psi[0].real() +
psi[0].imag() * psi[0].imag();
glBegin(GL_LINES);
for (int j = 1; j < N; j++) {
double p = psi[j].real() * psi[j].real() +
psi[j].imag() * psi[j].imag();
glVertex2d(x[j-1], 4 * pOld);
glVertex2d(x[j], 4 * p);
pOld = p;
}
glEnd();
glColor3ub(255, 165, 0); // potential orange
double Vold = V(x[1]);
glBegin(GL_LINES);
for (int j = 1; j < N; j++) {
double Vnew = V(x[j]);
glVertex2d(x[j-1], 0.2 * Vold);
glVertex2d(x[j], 0.2 * Vnew);
Vold = Vnew;
}
glEnd();
glColor3f(0, 0, 0); // text black
std::ostringstream os;
os << (periodic ? "Periodic " : "Infinite Wall ")
<< "Boundary Conditions" << std::ends;
drawText(os.str(), 0.02 * L, 0.28);
os.seekp(0); // beginning of string stream
os << "0" << std::ends;
drawText(os.str(), 0, -0.02);
drawText("0", 0, -0.02);
os.seekp(0);
os << "x = " << L << std::ends;
drawText(os.str(), (1 - 0.1) * L, -0.02);
os.seekp(0);
os << "t = " << t << std::ends;
drawText(os.str(), 0.02 * L, -0.29);
glutSwapBuffers();
}
void reshape(int w, int h) {
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, L, -0.3, 0.3);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
bool running; // to control animation
void mouse(int button, int state, int x, int y) {
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
if (running) {
glutIdleFunc(NULL);
running = false;
} else {
glutIdleFunc(timeStep);
running = true;
}
}
break;
default:
break;
}
}
void menu(int menuItem) {
switch (menuItem) {
case 1:
gaussian = !gaussian;
break;
case 2:
periodic = !periodic;
break;
case 3:
showRealImaginary = !showRealImaginary;
break;
case 4:
if (running) {
glutIdleFunc(NULL);
running = false;
}
initialize();
glutPostRedisplay();
break;
default:
break;
}
}
int main(int argc, char *argv[]) {
getInput();
initialize();
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize(600, 400);
glutInitWindowPosition(100, 100);
glutCreateWindow("Schroedinger Wave Packet Motion");
glClearColor(1.0, 1.0, 1.0, 0.0);
glShadeModel(GL_FLAT);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutCreateMenu(menu);
glutAddMenuEntry("Potential: Square/Gaussian", 1);
glutAddMenuEntry("Boundaries: Dirichlet/Periodic", 2);
glutAddMenuEntry("Real & Imag: Show/Hide", 3);
glutAddMenuEntry("Reset", 4);
glutAttachMenu(GLUT_RIGHT_BUTTON);
glutMainLoop();
}
矢量.hpp
#ifndef CPL_VECTOR_HPP
#define CPL_VECTOR_HPP
#include <complex>
#include <iostream>
namespace cpl {
class Vector {
public:
Vector(int dim = 1);
Vector(const Vector& dv);
~Vector() { delete [] v; }
int dimension() const { return dim; }
void resize(const int);
const double operator[](const int i) const { return v[i]; }
double& operator[](const int i) { return v[i]; }
Vector& operator = (const Vector& dv);
Vector& operator += (const Vector& dv);
Vector& operator -= (const Vector& dv);
Vector& operator *= (double d);
Vector& operator /= (double d);
double abs();
double norm();
double dot(const Vector& dv);
friend std::ostream& operator<<(std::ostream& os, const Vector& dv);
private:
int dim;
double *v;
};
inline Vector operator + (const Vector& dv) {
return dv;
}
extern Vector operator - (const Vector& dv);
extern Vector operator * (const Vector& dv, double d);
extern Vector operator * (double d, const Vector& dv);
extern Vector operator / (const Vector& dv, double d);
extern Vector operator + (const Vector& v1, const Vector& v2);
extern Vector operator - (const Vector& v1, const Vector& v2);
class ComplexVector {
public:
ComplexVector(int dim = 1);
ComplexVector(const ComplexVector& cv);
~ComplexVector() { delete [] v; }
int dimension() const { return dim; }
const std::complex<double> operator[](const int i) const { return v[i]; }
std::complex<double>& operator[](const int i) { return v[i]; }
ComplexVector& operator = (const ComplexVector& cv);
private:
int dim;
std::complex<double> *v;
};
class FFT {
public:
FFT() { N = 0; f = 0; inverse = false; }
void transform(ComplexVector& data);
void inverseTransform(ComplexVector& data);
Vector power(ComplexVector& data);
private:
int N;
ComplexVector *f;
bool inverse;
void bitReverse();
void DanielsonLanczos(int n);
};
extern void solveTridiagonal(
ComplexVector& a, ComplexVector& b, ComplexVector& c,
ComplexVector& r, ComplexVector& u);
extern void solveTridiagonalCyclic(
ComplexVector& a, ComplexVector& b, ComplexVector& c,
std::complex<double> alpha, std::complex<double> beta,
ComplexVector& r, ComplexVector& x);
} /* end namespace cpl */
#endif /* CPL_VECTOR_HPP */
编辑我不想删除这篇文章以防有人需要它,但我忘了使用下面的 Vector.cpp。
#include "Vector.hpp"
namespace cpl {
Vector::Vector(int dim) {
v = new double [this->dim = dim];
for (int i = 0; i < dim; i++) v[i] = 0;
}
Vector::Vector(const Vector& dv) {
v = new double [dim = dv.dim];
for (int i = 0; i < dim; i++) v[i] = dv.v[i];
}
void Vector::resize(const int dimension) {
delete [] v;
v = new double [dim = dimension];
for (int i = 0; i < dim; i++) v[i] = 0;
}
Vector& Vector::operator = (const Vector& dv) {
if (this != &dv) {
if (dim != dv.dim) {
delete [] v;
v = new double [dim = dv.dim];
}
for (int i = 0; i < dim; i++) v[i] = dv[i];
}
return *this;
}
Vector& Vector::operator += (const Vector& dv) {
for (int i = 0; i < dim; i++) v[i] += dv[i];
return *this;
}
Vector& Vector::operator -= (const Vector& dv) {
for (int i = 0; i < dim; i++) v[i] -= dv[i];
return *this;
}
Vector& Vector::operator *= (double d) {
for (int i = 0; i < dim; i++) v[i] *= d;
return *this;
}
Vector& Vector::operator /= (double d) {
for (int i = 0; i < dim; i++) v[i] /= d;
return *this;
}
Vector operator - (const Vector& dv) {
int dim = dv.dimension();
Vector temp(dim);
for (int i = 0; i < dim; i++) temp[i] = -dv[i];
return temp;
}
Vector operator * (const Vector& dv, double d) {
int dim = dv.dimension();
Vector temp(dim);
for (int i = 0; i < dim; i++) temp[i] = dv[i] * d;
return temp;
}
Vector operator * (double d, const Vector& dv) {
int dim = dv.dimension();
Vector temp(dim);
for (int i = 0; i < dim; i++) temp[i] = dv[i] * d;
return temp;
}
Vector operator / (const Vector& dv, double d) {
int dim = dv.dimension();
Vector temp(dim);
for (int i = 0; i < dim; i++) temp[i] = dv[i] / d;
return temp;
}
Vector operator + (const Vector& v1, const Vector& v2) {
int dim = v1.dimension();
Vector temp(dim);
for (int i = 0; i < dim; i++) temp[i] = v1[i] + v2[i];
return temp;
}
Vector operator - (const Vector& v1, const Vector& v2) {
int dim = v1.dimension();
Vector temp(dim);
for (int i = 0; i < dim; i++) temp[i] = v1[i] - v2[i];
return temp;
}
double Vector::abs() {
return std::sqrt(norm());
}
double Vector::norm() {
double sum = 0;
for (int i = 0; i < dim; i++) sum += v[i] * v[i];
return sum;
}
double Vector::dot(const Vector& dv) {
double sum = 0;
for (int i = 0; i < dim; i++) sum += v[i] * dv[i];
return sum;
}
std::ostream& operator<<(std::ostream& os, const Vector& dv) {
for (int i = 0; i < dv.dim; i++) {
os << dv.v[i];
if (i < dv.dim-1)
os << '\t';
else
os << '\n';
}
return os;
}
// ComplexVector implementation
ComplexVector::ComplexVector(int dim) {
v = new std::complex<double> [this->dim = dim];
for (int i = 0; i < dim; i++) v[i] = 0.0;
}
ComplexVector::ComplexVector(const ComplexVector& cv) {
v = new std::complex<double> [dim = cv.dim];
for (int i = 0; i < dim; i++) v[i] = cv.v[i];
}
ComplexVector& ComplexVector::operator = (const ComplexVector& cv) {
if (this != &cv) {
if (dim != cv.dim) {
delete [] v;
v = new std::complex<double> [dim = cv.dim];
}
for (int i = 0; i < dim; i++) v[i] = cv[i];
}
return *this;
}
// FFT implementation
void FFT::transform(ComplexVector& data) {
N = data.dimension();
f = &data;
bitReverse();
for (int n = 1; n < N; n *= 2)
DanielsonLanczos(n);
for (int i = 0; i < N; ++i)
(*f)[i] /= std::sqrt(double(N));
}
void FFT::inverseTransform(ComplexVector& data) {
inverse = true;
transform(data);
inverse = false;
}
void FFT::bitReverse() {
int j = 1;
for (int i = 1; i < N; ++i) {
if (i < j) {
std::complex<double> temp = (*f)[i-1];
(*f)[i-1] = (*f)[j-1];
(*f)[j-1] = temp;
}
int k = N / 2;
while ( k < j ) {
j -= k;
k /= 2;
}
j += k;
}
}
void FFT::DanielsonLanczos(int n) {
const double pi = 4 * atan(1.0);
std::complex<double> W(0, pi / n);
W = inverse ? std::exp(-W) : std::exp(W);
std::complex<double> W_j(1, 0);
for (int j = 0; j < n; ++j) {
for (int i = j; i < N; i += 2 * n) {
std::complex<double> temp = W_j * (*f)[n+i];
(*f)[n+i] = (*f)[i] - temp;
(*f)[i] += temp;
}
W_j *= W;
}
}
Vector FFT::power(ComplexVector& data) {
Vector P(1 + N / 2);
P[0] = std::norm(data[0]) / double(N);
for (int i = 1; i < N / 2; i++)
P[i] = (std::norm(data[i]) + std::norm(data[N-i])) / double(N);
P[N/2] = std::norm(data[N/2]) / double(N);
return P;
}
// Solving tridiagonal complex matrices
void solveTridiagonal(
ComplexVector& a, ComplexVector& b, ComplexVector& c,
ComplexVector& r, ComplexVector& u)
{
int n = a.dimension();
ComplexVector gamma(n);
std::complex<double> beta = b[0];
u[0] = r[0] / beta;
for (int j = 1; j < n; j++) {
gamma[j] = c[j-1] / beta;
beta = b[j] - a[j] * gamma[j];
u[j] = (r[j] - a[j] * u[j-1]) / beta;
}
for (int j = n - 2; j >= 0; j--)
u[j] -= gamma[j+1] * u[j+1];
}
void solveTridiagonalCyclic(
ComplexVector& a, ComplexVector& b, ComplexVector& c,
std::complex<double> alpha, std::complex<double> beta,
ComplexVector& r, ComplexVector& x)
{
int n = a.dimension();
ComplexVector bb(n), u(n), z(n);
std::complex<double> gamma = -b[0];
bb[0] = b[0] - gamma;
bb[n-1] = b[n-1] - alpha * beta / gamma;
for (int i = 1; i < n-1; i++)
bb[i] = b[i];
solveTridiagonal(a, bb, c, r, x);
u[0] = gamma;
u[n-1] = alpha;
for (int i = 1; i < n-1; i++)
u[i] = 0.0;
solveTridiagonal(a, bb, c, u, z);
std::complex<double> fact = x[0] + beta * x[n-1] / gamma;
fact /= 1.0 + z[0] + beta * z[n-1] / gamma;
for (int i = 0; i < n; i++)
x[i] -= fact * z[i];
}
} /* end namespace cpl */