0

使用 python 的 opencv 我需要将一个椭圆(使用 cv2.fitEllipse)拟合到 cv.FindCornerSubPix 返回的点数组(这里命名为“特征”)。我在互联网上看到了很多这样的例子,但我无法弄清楚。我认为 cv.FindCornerSubPix 返回一个元组数组,并且我的代码触发了一个错误,要求我将一个 numpy 数组作为 cv2.fitEllipse 的参数,所以我尝试将“功能”转换为一个 numpy 数组,现在错误是:

'错误:......\src\opencv\modules\imgproc\src\contours.cpp:2019: 错误:(-215) points.checkVector(2) >= 0 && (points.depth() == CV_32F || points.depth() == CV_32S)'

在第 196 行(代码末尾的“cv2.fitEllipse(ellipse)”),所以我想我没有将正确的数组格式提供给 cv2.fitEllipse。你能帮帮我吗?下面的代码只是 opencv 示例 lkdemo.py 的修改版本。

            # search the good points
        features = cv.GoodFeaturesToTrack (
            grey, eig, temp,
            MAX_COUNT,
            quality, min_distance, mask, 10, 0, 0.04)

        # refine the corner locations
        features = cv.FindCornerSubPix (
            grey,
            features,
            (win_size, win_size),  (-1, -1),
            (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03))

    elif features != []:
        # we have points, so display them

        # calculate the optical flow
        features, status, track_error = cv.CalcOpticalFlowPyrLK (
            prev_grey, grey, prev_pyramid, pyramid,
            features,
            (win_size, win_size), 3,
            (cv.CV_TERMCRIT_ITER|cv.CV_TERMCRIT_EPS, 20, 0.03),
            flags)

        # set back the points we keep
        features = [ p for (st,p) in zip(status, features) if st]

        if add_remove_pt:
            # we have a point to add, so see if it is close to
            # another one. If yes, don't use it
            def ptptdist(p0, p1):
                dx = p0[0] - p1[0]
                dy = p0[1] - p1[1]
                return dx**2 + dy**2
            if min([ ptptdist(pt, p) for p in features ]) < 25:
                # too close
                add_remove_pt = 0

        # draw the points as green circles
        for the_point in features:
            cv.Circle (image, (int(the_point[0]), int(the_point[1])), 3, (0, 255, 0, 0), -1, 8, 0)

        #Fit an ellipse
        array = np.array([tuple(i) for i in features])
        ellipse = np.asarray(array)
        cv2.fitEllipse(ellipse)
4

1 回答 1

0

这个问题就解决了。请在评论部分查看。顺便说一句,Stackoverflow 要求延迟几个小时让新人回答他自己的问题,这就是为什么我将答案放在评论中。

干杯

于 2013-05-28T21:49:52.410 回答