我使用scipy.optimize
最小化 12 个参数的函数。
我前段时间开始优化,仍在等待结果。
有没有办法强制scipy.optimize
显示它的进度(比如已经做了多少,目前的最佳点是什么)?
我使用scipy.optimize
最小化 12 个参数的函数。
我前段时间开始优化,仍在等待结果。
有没有办法强制scipy.optimize
显示它的进度(比如已经做了多少,目前的最佳点是什么)?
正如 mg007 所建议的那样,一些 scipy.optimize 例程允许回调函数(不幸的是,leastsq 目前不允许这样做)。下面是一个使用“fmin_bfgs”例程的示例,其中我使用回调函数来显示参数的当前值和每次迭代时目标函数的值。
import numpy as np
from scipy.optimize import fmin_bfgs
Nfeval = 1
def rosen(X): #Rosenbrock function
return (1.0 - X[0])**2 + 100.0 * (X[1] - X[0]**2)**2 + \
(1.0 - X[1])**2 + 100.0 * (X[2] - X[1]**2)**2
def callbackF(Xi):
global Nfeval
print '{0:4d} {1: 3.6f} {2: 3.6f} {3: 3.6f} {4: 3.6f}'.format(Nfeval, Xi[0], Xi[1], Xi[2], rosen(Xi))
Nfeval += 1
print '{0:4s} {1:9s} {2:9s} {3:9s} {4:9s}'.format('Iter', ' X1', ' X2', ' X3', 'f(X)')
x0 = np.array([1.1, 1.1, 1.1], dtype=np.double)
[xopt, fopt, gopt, Bopt, func_calls, grad_calls, warnflg] = \
fmin_bfgs(rosen,
x0,
callback=callbackF,
maxiter=2000,
full_output=True,
retall=False)
输出如下所示:
Iter X1 X2 X3 f(X)
1 1.031582 1.062553 1.130971 0.005550
2 1.031100 1.063194 1.130732 0.004973
3 1.027805 1.055917 1.114717 0.003927
4 1.020343 1.040319 1.081299 0.002193
5 1.005098 1.009236 1.016252 0.000739
6 1.004867 1.009274 1.017836 0.000197
7 1.001201 1.002372 1.004708 0.000007
8 1.000124 1.000249 1.000483 0.000000
9 0.999999 0.999999 0.999998 0.000000
10 0.999997 0.999995 0.999989 0.000000
11 0.999997 0.999995 0.999989 0.000000
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 11
Function evaluations: 85
Gradient evaluations: 17
至少通过这种方式,您可以看到优化器跟踪最小值
遵循@joel 的示例,有一种简洁有效的方法来做类似的事情。下面的例子展示了我们如何摆脱global
变量、call_back
函数和多次重新评估目标函数。
import numpy as np
from scipy.optimize import fmin_bfgs
def rosen(X, info): #Rosenbrock function
res = (1.0 - X[0])**2 + 100.0 * (X[1] - X[0]**2)**2 + \
(1.0 - X[1])**2 + 100.0 * (X[2] - X[1]**2)**2
# display information
if info['Nfeval']%100 == 0:
print '{0:4d} {1: 3.6f} {2: 3.6f} {3: 3.6f} {4: 3.6f}'.format(info['Nfeval'], X[0], X[1], X[2], res)
info['Nfeval'] += 1
return res
print '{0:4s} {1:9s} {2:9s} {3:9s} {4:9s}'.format('Iter', ' X1', ' X2', ' X3', 'f(X)')
x0 = np.array([1.1, 1.1, 1.1], dtype=np.double)
[xopt, fopt, gopt, Bopt, func_calls, grad_calls, warnflg] = \
fmin_bfgs(rosen,
x0,
args=({'Nfeval':0},),
maxiter=1000,
full_output=True,
retall=False,
)
这将产生类似的输出
Iter X1 X2 X3 f(X)
0 1.100000 1.100000 1.100000 2.440000
100 1.000000 0.999999 0.999998 0.000000
200 1.000000 0.999999 0.999998 0.000000
300 1.000000 0.999999 0.999998 0.000000
400 1.000000 0.999999 0.999998 0.000000
500 1.000000 0.999999 0.999998 0.000000
Warning: Desired error not necessarily achieved due to precision loss.
Current function value: 0.000000
Iterations: 12
Function evaluations: 502
Gradient evaluations: 98
但是,没有免费的发射,这里我用function evaluation times
而不是algorithmic iteration times
作为计数器。一些算法可能会在一次迭代中多次评估目标函数。
尝试使用:
options={'disp': True}
强制scipy.optimize.minimize
打印中间结果。
scipy 中的许多优化器确实缺乏详细的输出(“trust-constr”方法scipy.optimize.minimize
是一个例外)。我遇到了类似的问题,并通过在目标函数周围创建一个包装器并使用回调函数来解决它。这里没有执行额外的函数评估,所以这应该是一个有效的解决方案。
import numpy as np
class Simulator:
def __init__(self, function):
self.f = function # actual objective function
self.num_calls = 0 # how many times f has been called
self.callback_count = 0 # number of times callback has been called, also measures iteration count
self.list_calls_inp = [] # input of all calls
self.list_calls_res = [] # result of all calls
self.decreasing_list_calls_inp = [] # input of calls that resulted in decrease
self.decreasing_list_calls_res = [] # result of calls that resulted in decrease
self.list_callback_inp = [] # only appends inputs on callback, as such they correspond to the iterations
self.list_callback_res = [] # only appends results on callback, as such they correspond to the iterations
def simulate(self, x, *args):
"""Executes the actual simulation and returns the result, while
updating the lists too. Pass to optimizer without arguments or
parentheses."""
result = self.f(x, *args) # the actual evaluation of the function
if not self.num_calls: # first call is stored in all lists
self.decreasing_list_calls_inp.append(x)
self.decreasing_list_calls_res.append(result)
self.list_callback_inp.append(x)
self.list_callback_res.append(result)
elif result < self.decreasing_list_calls_res[-1]:
self.decreasing_list_calls_inp.append(x)
self.decreasing_list_calls_res.append(result)
self.list_calls_inp.append(x)
self.list_calls_res.append(result)
self.num_calls += 1
return result
def callback(self, xk, *_):
"""Callback function that can be used by optimizers of scipy.optimize.
The third argument "*_" makes sure that it still works when the
optimizer calls the callback function with more than one argument. Pass
to optimizer without arguments or parentheses."""
s1 = ""
xk = np.atleast_1d(xk)
# search backwards in input list for input corresponding to xk
for i, x in reversed(list(enumerate(self.list_calls_inp))):
x = np.atleast_1d(x)
if np.allclose(x, xk):
break
for comp in xk:
s1 += f"{comp:10.5e}\t"
s1 += f"{self.list_calls_res[i]:10.5e}"
self.list_callback_inp.append(xk)
self.list_callback_res.append(self.list_calls_res[i])
if not self.callback_count:
s0 = ""
for j, _ in enumerate(xk):
tmp = f"Comp-{j+1}"
s0 += f"{tmp:10s}\t"
s0 += "Objective"
print(s0)
print(s1)
self.callback_count += 1
可以定义一个简单的测试
from scipy.optimize import minimize, rosen
ros_sim = Simulator(rosen)
minimize(ros_sim.simulate, [0, 0], method='BFGS', callback=ros_sim.callback, options={"disp": True})
print(f"Number of calls to Simulator instance {ros_sim.num_calls}")
导致:
Comp-1 Comp-2 Objective
1.76348e-01 -1.31390e-07 7.75116e-01
2.85778e-01 4.49433e-02 6.44992e-01
3.14130e-01 9.14198e-02 4.75685e-01
4.26061e-01 1.66413e-01 3.52251e-01
5.47657e-01 2.69948e-01 2.94496e-01
5.59299e-01 3.00400e-01 2.09631e-01
6.49988e-01 4.12880e-01 1.31733e-01
7.29661e-01 5.21348e-01 8.53096e-02
7.97441e-01 6.39950e-01 4.26607e-02
8.43948e-01 7.08872e-01 2.54921e-02
8.73649e-01 7.56823e-01 2.01121e-02
9.05079e-01 8.12892e-01 1.29502e-02
9.38085e-01 8.78276e-01 4.13206e-03
9.73116e-01 9.44072e-01 1.55308e-03
9.86552e-01 9.73498e-01 1.85366e-04
9.99529e-01 9.98598e-01 2.14298e-05
9.99114e-01 9.98178e-01 1.04837e-06
9.99913e-01 9.99825e-01 7.61051e-09
9.99995e-01 9.99989e-01 2.83979e-11
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 19
Function evaluations: 96
Gradient evaluations: 24
Number of calls to Simulator instance 96
当然这只是一个模板,它可以根据您的需要进行调整。它没有提供有关优化器状态的所有信息(例如在 MATLAB 的优化工具箱中),但至少您对优化的进度有所了解。
可以在此处找到类似的方法,而无需使用回调函数。在我的方法中,回调函数用于在优化器完成迭代时准确打印输出,而不是每个函数调用。
您正在使用哪个最小化函数?
大多数功能都建立了进度报告,包括通过使用标志准确显示您想要的数据的多级报告disp
(例如参见scipy.optimize.fmin_l_bfgs_b)。
也可以在要最小化的函数中包含一个简单的 print() 语句。如果您导入该函数,您可以创建一个 wapper。
import numpy as np
from scipy.optimize import minimize
def rosen(X): #Rosenbrock function
print(X)
return (1.0 - X[0])**2 + 100.0 * (X[1] - X[0]**2)**2 + \
(1.0 - X[1])**2 + 100.0 * (X[2] - X[1]**2)**2
x0 = np.array([1.1, 1.1, 1.1], dtype=np.double)
minimize(rosen,
x0)
下面是一个适合我的解决方案:
def f_(x): # The rosenbrock function
return (1 - x[0])**2 + 100 * (x[1] - x[0]**2)**2
def conjugate_gradient(x0, f):
all_x_i = [x0[0]]
all_y_i = [x0[1]]
all_f_i = [f(x0)]
def store(X):
x, y = X
all_x_i.append(x)
all_y_i.append(y)
all_f_i.append(f(X))
optimize.minimize(f, x0, method="CG", callback=store, options={"gtol": 1e-12})
return all_x_i, all_y_i, all_f_i
例如:
conjugate_gradient([2, -1], f_)