在一项作业中,我们被要求对 CART 模型执行交叉验证。我尝试使用 from 的cvFit函数,cvTools但收到一条奇怪的错误消息。这是一个最小的例子:
library(rpart)
library(cvTools)
data(iris)
cvFit(rpart(formula=Species~., data=iris))
我看到的错误是:
Error in nobs(y) : argument "y" is missing, with no default
和traceback():
5: nobs(y)
4: cvFit.call(call, data = data, x = x, y = y, cost = cost, K = K, 
       R = R, foldType = foldType, folds = folds, names = names, 
       predictArgs = predictArgs, costArgs = costArgs, envir = envir, 
       seed = seed)
3: cvFit(call, data = data, x = x, y = y, cost = cost, K = K, R = R, 
       foldType = foldType, folds = folds, names = names, predictArgs = predictArgs, 
       costArgs = costArgs, envir = envir, seed = seed)
2: cvFit.default(rpart(formula = Species ~ ., data = iris))
1: cvFit(rpart(formula = Species ~ ., data = iris))
看起来这y是强制性的cvFit.default。但:
> cvFit(rpart(formula=Species~., data=iris), y=iris$Species)
Error in cvFit.call(call, data = data, x = x, y = y, cost = cost, K = K,  : 
  'x' must have 0 observations
我究竟做错了什么?哪个包可以让我对 CART 树进行交叉验证,而无需自己编写代码?(我太懒了……)