我想知道如何在R中设置一些基本匹配程序的示例。各种编程语言中有很多示例,但是我还没有找到R的好示例。
假设我想让学生与项目相匹配,我会考虑在谷歌上搜索这个问题时遇到的 3 种替代方法:
1)二分匹配案例:我要求每个学生说出 3 个要从事的项目(没有说明这 3 个项目中的任何偏好排名)。
ID T.1 T.2 T.3 T.4 T.5 T.6 T.7
1 1 1 1 0 0 0 0
2 0 0 0 0 1 1 1
3 0 1 1 1 0 0 0
4 0 0 0 1 1 1 0
5 1 0 1 0 1 0 0
6 0 1 0 0 0 1 1
7 0 1 1 0 1 0 0
--
d.1 <- structure(list(Student.ID = 1:7, Project.1 = c(1L, 0L, 0L, 0L,
1L, 0L, 0L), Project.2 = c(1L, 0L, 1L, 0L, 0L, 1L, 1L), Project.3 = c(1L,
0L, 1L, 0L, 1L, 0L, 1L), Project.4 = c(0L, 0L, 1L, 1L, 0L, 0L,
0L), Project.5 = c(0L, 1L, 0L, 1L, 1L, 0L, 1L), Project.6 = c(0L,
1L, 0L, 1L, 0L, 1L, 0L), Project.7 = c(0L, 1L, 0L, 0L, 0L, 1L,
0L)), .Names = c("Student.ID", "Project.1", "Project.2", "Project.3",
"Project.4", "Project.5", "Project.6", "Project.7"), class = "data.frame", row.names = c(NA,
-7L))
2)匈牙利算法:我要求每个学生命名 3 个项目,并说明这 3 个项目中的偏好排名。据我了解,在这种情况下应用该算法的推理类似于:排名越好,排名越低学生的“成本”。
ID T.1 T.2 T.3 T.4 T.5 T.6 T.7
1 3 2 1 na na na na
2 na na na na 1 2 3
3 na 1 3 2 na na na
4 na na na 1 2 3 na
5 2 na 3 na 1 na na
6 na 3 na na na 2 1
7 na 1 2 na 3 na na
--
d.2 <- structure(list(Student.ID = 1:7, Project.1 = structure(c(2L, 3L,
3L, 3L, 1L, 3L, 3L), .Label = c("2", "3", "na"), class = "factor"),
Project.2 = structure(c(2L, 4L, 1L, 4L, 4L, 3L, 1L), .Label = c("1",
"2", "3", "na"), class = "factor"), Project.3 = structure(c(1L,
4L, 3L, 4L, 3L, 4L, 2L), .Label = c("1", "2", "3", "na"), class = "factor"),
Project.4 = structure(c(3L, 3L, 2L, 1L, 3L, 3L, 3L), .Label = c("1",
"2", "na"), class = "factor"), Project.5 = structure(c(4L,
1L, 4L, 2L, 1L, 4L, 3L), .Label = c("1", "2", "3", "na"), class = "factor"),
Project.6 = structure(c(3L, 1L, 3L, 2L, 3L, 1L, 3L), .Label = c("2",
"3", "na"), class = "factor"), Project.7 = structure(c(3L,
2L, 3L, 3L, 3L, 1L, 3L), .Label = c("1", "3", "na"), class = "factor")), .Names = c("Student.ID",
"Project.1", "Project.2", "Project.3", "Project.4", "Project.5",
"Project.6", "Project.7"), class = "data.frame", row.names = c(NA,
-7L))
3)???方法:这应该与(2)非常相关。但是,我认为这可能是一种更好/更公平的方法(至少在示例的设置中)。学生不能选择项目,他们甚至不知道项目,但是他们已经对他们的资格(1“不存在”到10“专业水平”)进行了评价。此外,讲师还对每个项目所需的技能进行了评级。除了 (2) 之外,第一步是计算相似度矩阵,然后从上面运行优化程序。
PS: Programming Skills
SK: Statistical Knowledge
IE: Industry Experience
ID PS SK IE
1 10 9 8
2 1 2 10
3 10 2 5
4 2 5 3
5 10 2 10
6 1 10 1
7 5 5 5
--
d.3a <- structure(list(Student.ID = 1:7, Programming.Skills = c(10L, 1L,
10L, 2L, 10L, 1L, 5L), Statistical.knowlegde = c(9L, 2L, 2L,
5L, 2L, 10L, 5L), Industry.Expertise = c(8L, 10L, 5L, 3L, 10L,
1L, 5L)), .Names = c("Student.ID", "Programming.Skills", "Statistical.knowlegde",
"Industry.Expertise"), class = "data.frame", row.names = c(NA,
-7L))
--
T: Topic ID
PS: Programming Skills
SK: Statistical Knowledge
IE: Industry Experience
T PS SK IE
1 10 5 1
2 1 1 5
3 10 10 10
4 2 8 3
5 4 3 2
6 1 1 1
7 5 7 2
--
d.3b <- structure(list(Project.ID = 1:7, Programming.Skills = c(10L,
1L, 10L, 2L, 4L, 1L, 5L), Statistical.Knowlegde = c(5L, 1L, 10L,
8L, 3L, 1L, 7L), Industry.Expertise = c(1L, 5L, 10L, 3L, 2L,
1L, 2L)), .Names = c("Project.ID", "Programming.Skills", "Statistical.Knowlegde",
"Industry.Expertise"), class = "data.frame", row.names = c(NA,
-7L))
我将不胜感激在 R 中实施这 3 种方法的任何帮助。谢谢。
更新:以下问题似乎是相关的,但没有一个显示如何在 R 中解决它: https://math.stackexchange.com/questions/132829/group-membership-assignment-by-preferences-optimization-problem https://math.stackexchange.com/questions/132829/group-membership-assignment-by-preferences-optimization-problem /superuser.com/questions/467577/using-optimization-to-assign-by-preference