2

我正在尝试编写代码来测试是否n^2 + (n+1)^2完美。由于我在编程方面没有太多经验,所以我只能使用 Matlab。到目前为止,这是我尝试过的

function [ Liste ] = testSquare(N)

        if exist('NumberTheory')
           load NumberTheory.mat
        else
            MaxT = 0;
        end

        if MaxT > N 
            return
        elseif MaxT > 0 
            L = 1 + MaxT;
        else
            L = 1;
        end


    n = (L:N)';            % Makes a list of numbers from L to N
    m = n.^2 + (n+1).^2;   % Makes a list of numbers on the form A^2+(A+1)^2
    P = dec2hex(m);        % Converts this list to hexadecimal 

    Length = length(dec2hex(P(N,:))); %F inds the maximum number of digits in the hexidecimal number
    Modulo = ['0','1','4','9']';      % Only numbers ending on 0,1,4 or 9 can be perfect squares in hex

    [d1,~] = ismember(P(:,Length),Modulo); % Finds all numbers that end on 0,1,4 or 9

    m = m(d1);                             % Removes all numbers not ending on 0,1,4 or 9
    n = n(d1);                             % -------------------||-----------------------
   mm = sqrt(m);                           % Takes the square root of all the possible squares

    A = (floor(mm + 0.5).^2 == m);         % Tests wheter these are actually squares
   lA = length(A(A>0));                    % Finds the number of such numbers

   MaxT = N;
   save NumberTheory.mat MaxT;

if lA>0

    m = m(A);                              % makes a list of all the square numbers
    n = n(A);                              % finds the corresponding n values
   mm = mm(A);                             % Finds the squareroot values of m 

    fid = fopen('Tallteori.txt','wt');     % Writes everything to a simple text.file
        for ii = 1:lA
            fprintf(fid,'%20d %20d %20d\t',n(ii),m(ii),mm(ii));
            fprintf(fid,'\n');
        end
    fclose(fid);

end

end

这会将具有相应 n 值的正方形写入文件。现在我看到使用十六进制是在 C+ 中找到完美正方形的一种快速方法,并尝试在 matlab 中使用它。但是我有点不确定这是否是最好的方法。

m > 2^52由于十六进制转换,上面的代码会崩溃。

是否有另一种方法/更快地将表单上的所有完美正方形写入n^2 + (n+1)^2从 1 到 N 的文本文件?

4

1 回答 1

9

有一种更快的方法,甚至不需要测试。您需要一些基本数论才能找到这种方法,但这里是:

如果n² + (n+1)²是一个完美的正方形,这意味着有一个m这样的

     m² = n² + (n+1)² = 2n² + 2n + 1
<=> 2m² = 4n² + 4n + 1 + 1
<=> 2m² = (2n+1)² + 1
<=> (2n+1)² - 2m² = -1

这种类型的方程很容易求解,从“最小”(正)解开始

1² - 2*1² = -1

x² - 2y² = -1

对应于该数字1 + √2,您可以通过将其乘以原始解的幂来获得所有进一步的解

a² - 2b² = 1

这是(1 + √2)² = 3 + 2*√2

x² - 2y² = -1将其写成矩阵形式,您将获得as的所有解

|x_k|   |3 4|^k   |1|
|y_k| = |2 3|   * |1|

并且x_k都必然是奇数,因此可以写成2*n + 1

前几个解决方案(x,y)

(1,1), (7,5), (41,29), (239,169)

对应于(n,m)

(0,1), (3,5), (20,29), (119,169)

您可以通过以下方式获得下一个(n,m)解决方案对

(n_(k+1), m_(k+1)) = (3*n_k + 2*m_k + 1, 4*n_k + 3*m_k + 2)

(n_0, m_0) = (0,1).

快速 Haskell 代码,因为我不会说 MatLab:

Prelude> let next (n,m) = (3*n + 2*m + 1, 4*n + 3*m + 2) in take 20 $ iterate next (0,1)
[(0,1),(3,5),(20,29),(119,169),(696,985),(4059,5741),(23660,33461),(137903,195025)
,(803760,1136689),(4684659,6625109),(27304196,38613965),(159140519,225058681)
,(927538920,1311738121),(5406093003,7645370045),(31509019100,44560482149)
,(183648021599,259717522849),(1070379110496,1513744654945),(6238626641379,8822750406821)
,(36361380737780,51422757785981),(211929657785303,299713796309065)]
Prelude> map (\(n,m) -> (n^2 + (n+1)^2 - m^2)) it
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

由 EitanT 编辑

这是计算第一个N数字的 MATLAB 代码:

res = zeros(1, N);
nm = [0, 1];
for k = 1:N
    nm = nm * [3 4; 2 3] + [1, 2];
    res(k) = nm(1);
end

结果数组res应保存n满足完美正方形条件的值。

于 2013-05-20T17:47:07.937 回答