考虑一个numpy
数组规范,通常用于指定matplotlib
绘图数据:
t = np.arange(0.0,1.5,0.25)
s = np.sin(2*np.pi*t)
基本上,这将x
我们数据点的坐标存储(x,y)
在数组中t
;以及数组中的结果y
坐标(在本例中为 y=f(x) 的结果) 。然后,使用该函数可以很方便地获取 和 中的连续条目对,表示一个数据点的坐标,如下所示:sin(x)
s
numpy.nditer
t
s
(x,y)
for x, y in np.nditer([t,s]):
print("xy: %f:%f" % (x,y))
所以,我正在尝试以下代码段test.py
:
import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25) ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t) ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])
for x, y in np.nditer([t,s]):
print("xy: %f:%f" % (x,y))
...结果是:
$ python3.2 test.py
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i [' 0', ' 1', ' 2', ' 3', ' 4', ' 5']
xy: 0.000000:0.000000
xy: 0.250000:1.000000
xy: 0.500000:0.000000
xy: 0.750000:-1.000000
xy: 1.000000:-0.000000
xy: 1.250000:1.000000
$ python2.7 test.py
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', [' 0', ' 1', ' 2', ' 3', ' 4', ' 5'])
Traceback (most recent call last):
File "test.py", line 10, in <module>
for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'
啊 - 事实证明,在 NumPy 1.6 中引入的迭代器对象 nditer 在numpy
我的 Python 2.7 安装版本中不可用。
因此,由于我也想支持该特定版本,我需要找到一种适用于旧版本的方法numpy
- 但我仍然希望仅指定for x,y in somearray
,并直接在循环中获取坐标的便利。
在弄乱了numpy
文档之后,我想出了这个getXyIter
功能:
import numpy as np
print("numpy version {0}".format(np.__version__))
t = np.arange(0.0,1.5,0.25) ; print("t", ["%+.2e"%i for i in t])
s = np.sin(2*np.pi*t) ; print("s", ["%+.2e"%i for i in s])
print("i", ["% 9d"%i for i in range(0, len(t))])
def getXyIter(inarr):
if np.__version__ >= "1.6.0":
return np.nditer(inarr.tolist())
else:
dimensions = inarr.shape
xlen = dimensions[1]
xinds = np.arange(0, xlen, 1)
return np.transpose(np.take(inarr, xinds, axis=1))
for x, y in getXyIter(np.array([t,s])):
print("xyIt: %f:%f" % (x,y))
for x, y in np.nditer([t,s]):
print("xynd: %f:%f" % (x,y))
...这似乎工作正常
$ python2.7 test.py
numpy version 1.5.1
('t', ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00'])
('s', ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00'])
('i', [' 0', ' 1', ' 2', ' 3', ' 4', ' 5'])
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
Traceback (most recent call last):
File "test.py", line 23, in <module>
for x, y in np.nditer([t,s]):
AttributeError: 'module' object has no attribute 'nditer'
$ python3.2 test.py
numpy version 1.7.0
t ['+0.00e+00', '+2.50e-01', '+5.00e-01', '+7.50e-01', '+1.00e+00', '+1.25e+00']
s ['+0.00e+00', '+1.00e+00', '+1.22e-16', '-1.00e+00', '-2.45e-16', '+1.00e+00']
i [' 0', ' 1', ' 2', ' 3', ' 4', ' 5']
xyIt: 0.000000:0.000000
xyIt: 0.250000:1.000000
xyIt: 0.500000:0.000000
xyIt: 0.750000:-1.000000
xyIt: 1.000000:-0.000000
xyIt: 1.250000:1.000000
xynd: 0.000000:0.000000
xynd: 0.250000:1.000000
xynd: 0.500000:0.000000
xynd: 0.750000:-1.000000
xynd: 1.000000:-0.000000
xynd: 1.250000:1.000000
我的问题是 - 在 numpy < 1.6.0 的版本中,这种迭代应该是这样吗?