我的方法听起来很复杂,但最终该方法的计算时间将远远小于距离计算(评估你的f(x)
)。此外,现有库中已经编写了很多它的实现。
所以我会做什么:
f(x)
用切比雪夫多项式近似
- 找到那个多项式的真正根
- 如果找到任何根,则将这些根用作更精确的根查找器中的初始估计(如果需要)
鉴于您的函数的性质(平滑、连续、否则表现良好)以及存在 0,1 或 2 个根的信息,已经可以通过 3 次评估找到一个好的切比雪夫多项式f(x)
。
然后求切比雪夫系数伴生矩阵的特征值;这些对应于切比雪夫多项式的根。
如果一切都是虚构的,则有 0 个根。如果有一些真正的根源,请检查两个是否相等(您所说的“罕见”情况)。否则,所有实特征值都是根;其中最低的一个是你寻找的根。
然后使用 Newton-Raphson 进行细化(如有必要,或使用更好的 Chebychev 多项式)。的导数f
可以使用中心差来近似
f'(x) = ( f(x+h)-f(h-x) ) /2/h (for small h)
我在 Matlab/Octave 中实现了 Chebychev 例程(如下所示)。像这样使用:
R = FindRealRoots(@f, x_min, x_max, 5, true,true);
在[x_min,x_max]
您的范围内x
,5
用于查找多项式的点数(越高,越准确。等于所需的函数评估量),最后一个true
将绘制实际函数和切比雪夫近似值的图(主要用于测试目的)。
现在,实现:
% FINDREALROOTS Find approximations to all real roots of any function
% on an interval [a, b].
%
% USAGE:
% Roots = FindRealRoots(funfcn, a, b, n, vectorized, make_plot)
%
% FINDREALROOTS() approximates all the real roots of the function 'funfcn'
% in the interval [a,b]. It does so by finding the roots of an [n]-th degree
% Chebyshev polynomial approximation, via the eignevalues of the associated
% companion matrix.
%
% When the argument [vectorized] is [true], FINDREALROOTS() will evaluate
% the function 'funfcn' at all [n] required points in the interval
% simultaneously. Otherwise, it will use ARRAFUN() to calculate the [n]
% function values one-by-one. [vectorized] defaults to [false].
%
% When the argument [make_plot] is true, FINDREALROOTS() plots the
% original function and the Chebyshev approximation, and shows any roots on
% the given interval. Also [make_plot] defaults to [false].
%
% All [Roots] (if any) will be sorted.
%
% First version 26th May 2007 by Stephen Morris,
% Nightingale-EOS Ltd., St. Asaph, Wales.
%
% Modified 14/Nov (Rody Oldenhuis)
%
% See also roots, eig.
function Roots = FindRealRoots(funfcn, a, b, n, vectorized, make_plot)
% parse input and initialize.
inarg = nargin;
if n <= 2, n = 3; end % Minimum [n] is 3:
if (inarg < 5), vectorized = false; end % default: function isn't vectorized
if (inarg < 6), make_plot = false; end % default: don't make plot
% some convenient variables
bma = (b-a)/2; bpa = (b+a)/2; Roots = [];
% Obtain the Chebyshev coefficients for the function
%
% Based on the routine given in Numerical Recipes (3rd) section 5.8;
% calculates the Chebyshev coefficients necessary to approximate some
% function over the interval [a,b]
% initialize
c = zeros(1,n); k=(1:n)'; y = cos(pi*((1:n)-1/2)/n);
% evaluate function on Chebychev nodes
if vectorized
f = feval(funfcn,(y*bma)+bpa);
else
f = arrayfun(@(x) feval(funfcn,x),(y*bma)+bpa);
end
% compute the coefficients
for j=1:n, c(j)=(f(:).'*(cos((pi*(j-1))*((k-0.5)/n))))*(2-(j==1))/n; end
% coefficients may be [NaN] if [inf]
% ??? TODO - it is of course possible for c(n) to be zero...
if any(~isfinite(c(:))) || (c(n) == 0), return; end
% Define [A] as the Frobenius-Chebyshev companion matrix. This is based
% on the form given by J.P. Boyd, Appl. Num. Math. 56 pp.1077-1091 (2006).
one = ones(n-3,1);
A = diag([one/2; 0],-1) + diag([1; one/2],+1);
A(end, :) = -c(1:n-1)/2/c(n);
A(end,end-1) = A(end,end-1) + 0.5;
% Now we have the companion matrix, we can find its eigenvalues using the
% MATLAB built-in function. We're only interested in the real elements of
% the matrix:
eigvals = eig(A); realvals = eigvals(imag(eigvals)==0);
% if there aren't any real roots, return
if isempty(realvals), return; end
% Of course these are the roots scaled to the canonical interval [-1,1]. We
% need to map them back onto the interval [a, b]; we widen the interval just
% a tiny bit to make sure that we don't miss any that are right on the
% boundaries.
rangevals = nonzeros(realvals(abs(realvals) <= 1+1e-5));
% also sort the roots
Roots = sort(rangevals*bma + bpa);
% As a sanity check we'll plot out the original function and its Chebyshev
% approximation: if they don't match then we know to call the routine again
% with a larger 'n'.
if make_plot
% simple grid
grid = linspace(a,b, max(25,n));
% evaluate function
if vectorized
fungrid = feval(funfcn, grid);
else
fungrid = arrayfun(@(x) feval(funfcn,x), grid);
end
% corresponding Chebychev-grid (more complicated but essentially the same)
y = (2.*grid-a-b)./(b-a); d = zeros(1,length(grid)); dd = d;
for j = length(c):-1:2, sv=d; d=(2*y.*d)-dd+c(j); dd=sv; end, chebgrid=(y.*d)-dd+c(1);
% Now make plot
figure(1), clf, hold on
plot(grid, fungrid ,'color' , 'r');
line(grid, chebgrid,'color' , 'b');
line(grid, zeros(1,length(grid)), 'linestyle','--')
legend('function', 'interpolation')
end % make plot
end % FindRealRoots