我正在研究人脸识别,当我运行代码时,它会在 EigenObjectRecognizer 初始化的地方停止执行并退出程序而没有任何错误。以前有没有其他人遇到过同样的问题?如果您需要其他代码,我可以发布更多的。我已经看到我的代码一直在工作,直到识别器使用训练集中的数据进行训练
EigenObjectRecognizer recognizer = new EigenObjectRecognizer(
trainingImages.ToArray(),
NameLabless.ToArray(),
3000,
ref termCrit);
name = recognizer.Recognize(ExtFaces[faceNo]).ToString();
我用来从训练集中加载的代码是
public FaceRecognizer()
{
InitializeComponent();
try
{
ContTrain = ContTrain + 1;
//Load previous trained and labels for each image from the database Here
string NameLabelsinfo = File.ReadAllText(Application.StartupPath +
"/TrainedFaces/TrainedNameLables.txt");
string[] NameLabels = NameLabelsinfo.Split('%');
NumNameLabels = Convert.ToInt16(NameLabels[0]);
string IDLabelsinfo = File.ReadAllText(Application.StartupPath +
"/TrainedFaces/TrainedNameLables.txt");
string[] IDLables = IDLabelsinfo.Split('%');
NumIDLabels = Convert.ToInt16(IDLables[0]);
if (NumNameLabels == NumIDLabels)
{
ContTrain = NumNameLabels;
string LoadFaces;
// Converting the master image to a bitmap
for (int tf = 1; tf < NumNameLabels + 1; tf++)
{
LoadFaces = String.Format("face{0}.bmp", tf);
trainingImages.Add(new Image<Gray, byte>(String.Format("
{0}/TrainedFaces/{1}", Application.StartupPath,
LoadFaces)));
IDLabless.Add(IDLables[tf]);
NameLabless.Add(NameLabels[tf]);
}
}
}
catch (Exception e)
{
//MessageBox.Show(e.ToString());
MessageBox.Show("Nothing in binary database, please add at least a
face(Simply train the prototype with the Add
Face Button).", "Triained faces load", MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);
}
}
而人脸识别功能如下
private void RecognizeFaces()
{
//detect faces from the gray-scale image and store into an array of type
// 'var',i.e 'MCvAvgComp[]'
Image<Gray, byte> grayframe = GetGrayframe();
//Assign user-defined Values to parameter variables:
MinNeighbors = int.Parse(comboBoxMinNeigh.Text); // the 3rd parameter
WindowsSize = int.Parse(textBoxWinSiz.Text); // the 5th parameter
ScaleIncreaseRate = Double.Parse(comboBoxScIncRte.Text); //the 2nd parameter
var faces = grayframe.DetectHaarCascade(haar, ScaleIncreaseRate, MinNeighbors,
HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
new Size(WindowsSize, WindowsSize))[0];
if (faces.Length > 0)
{
Bitmap ExtractedFace; //empty
ExtFaces = new Image<Gray, byte>[faces.Length];
faceNo = 0;
foreach (var face in faces)
{
// ImageFrame.Draw(face.rect, new Bgr(Color.Green), 3);
t = t + 1;
//set the size of the empty box(ExtractedFace) which will later
// contain the detected face
ExtractedFace = new Bitmap(face.rect.Width, face.rect.Height);
ExtFaces[faceNo] = new Image<Gray, byte>(ExtractedFace);
//= newExtractedImage;
ExtFaces[faceNo] = ExtFaces[faceNo].Resize(100, 100,
Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
//TermCriteria for face recognition with numbers of trained images
// like maxIteration
MCvTermCriteria termCrit = new MCvTermCriteria(ContTrain, 0.001);
if (trainingImages.ToArray().Length != 0)
{
//Eigen face recognizer
EigenObjectRecognizer recognizer = new EigenObjectRecognizer(
trainingImages.ToArray(),
NameLabless.ToArray(),
3000,
ref termCrit);
name = recognizer.Recognize(ExtFaces[faceNo]).ToString();
stringOutput[faceNo] = name;
}
faceNo++;
}
pbExtractedFaces.Image = ExtFaces[0].ToBitmap(); //draw the face detected
in the 0th (gray) channel with blue
color
t = 0;
if (stringOutput[0] == null)
{
label1.Text = "Unknown";
label9.Text = "";
}
//Draw the label for each face detected and recognized
else
{
label1.Text = "Known";
label9.Text = stringOutput[0];
}
}
if (faceNo == 0)
{
MessageBox.Show("No face detected");
}
else
{
btnNextRec.Enabled = true;
btnPreviousRec.Enabled = true;
}
}
当这个面部识别器方法被作为一个事件调用时,它会一直工作,直到 EigenObjectRecognizer 被训练,然后它停止工作(退出运行)并且程序完全停止运行。
我会期待你的回应,谢谢 Sisay