你是对的。有这么多的词,仅仅使用这个词实际上并不能让你开发出一个好的模型。你需要降低维度。正如您所建议的,一种方法是参加演讲。当然,您还可以提取其他特征。例如,我的一个 .arff 文件的以下一小部分用于确定句子中的句点是否标记了结尾:
@relation period
@attribute minus_three {'CC', 'CD', 'DT', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNPS', 'NNS', 'NP', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP','WRB', 'NUM', 'PUNC', 'NEND', 'RAND'}
@attribute minus_three_length real
@attribute minus_three_case {'UC','LC','NA'}
@attribute minus_two {'CC', 'CD', 'DT', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNPS', 'NNS', 'NP', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP','WRB', 'NUM', 'PUNC', 'NEND', 'RAND'}
@attribute minus_two_length real
@attribute minus_two_case {'UC','LC','NA'}
@attribute minus_one {'CC', 'CD', 'DT', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNPS', 'NNS', 'NP', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP','WRB', 'NUM', 'PUNC', 'NEND', 'RAND'}
@attribute minus_one_length real
@attribute minus_one_case {'UC','LC','NA'}
@attribute plus_one {'CC', 'CD', 'DT', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNPS', 'NNS', 'NP', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP','WRB', 'NUM', 'PUNC', 'NEND', 'RAND'}
@attribute plus_one_length real
@attribute plus_one_case {'UC','LC','NA'}
@attribute plus_two {'CC', 'CD', 'DT', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNPS', 'NNS', 'NP', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP','WRB', 'NUM', 'PUNC', 'NEND', 'RAND'}
@attribute plus_two_length real
@attribute plus_two_case {'UC','LC','NA'}
@attribute plus_three {'CC', 'CD', 'DT', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNPS', 'NNS', 'NP', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP','WRB', 'NUM', 'PUNC', 'NEND', 'RAND'}
@attribute plus_three_length real
@attribute plus_three_case {'UC','LC','NA'}
@attribute left_before_reliable real
@attribute right_before_reliable real
@attribute spaces_follow_period real
@attribute class {'EOS','NEOS'}
@data
VBP, 2, LC,NP, 4, UC,NN, 1, UC,NP, 6, UC,NEND, 1, NA,NN, 7, LC,31,47,1,NEOS
NNS, 10, LC,RBR, 4, LC,VBN, 5, LC,?, 3, NA,NP, 6, UC,NP, 6, UC,93,0,0,EOS
VBD, 4, LC,RB, 2, LC,RP, 4, LC,CC, 3, UC,UH, 5, LC,VBP, 2, LC,19,17,2,EOS
编辑(基于问题):所以,这是一个有监督的学习实验。训练数据来自段落样式格式的普通句子,但被转换为以下向量模型:
- 第 1 列:类别:句末或非句末
- 第 2-8 列:围绕相关期间的 +/- 3 个单词
- 第 9,10 列:分别在下一个可靠句子定界符(例如 ?、! 或段落标记)之前的句点的左/右字数。
- 第 11 列:句点后面的空格数。
当然,这不是一个很难解决的复杂问题,但它是对 Weka 的一个很好的小介绍。由于我们不能只使用单词作为特征,所以我使用了他们的 POS 标签。我还提取了单词的长度,单词是否大写等。
因此,您可以提供任何东西作为测试数据,只要您能够将其转换为上面的矢量模型并提取 .arff 中使用的特征。