这是通过掩蔽的方法
模拟带有一些孔的框架(A 是您的“关闭”字段)
In [20]: df = DataFrame(randn(10,3),index=date_range('20130101',periods=10,freq='min'),
columns=list('ABC'))
In [21]: df.iloc[1:3,:] = np.nan
In [22]: df.iloc[5:8,1:3] = np.nan
In [23]: df
Out[23]:
A B C
2013-01-01 00:00:00 -0.486149 0.156894 -0.272362
2013-01-01 00:01:00 NaN NaN NaN
2013-01-01 00:02:00 NaN NaN NaN
2013-01-01 00:03:00 1.788240 -0.593195 0.059606
2013-01-01 00:04:00 1.097781 0.835491 -0.855468
2013-01-01 00:05:00 0.753991 NaN NaN
2013-01-01 00:06:00 -0.456790 NaN NaN
2013-01-01 00:07:00 -0.479704 NaN NaN
2013-01-01 00:08:00 1.332830 1.276571 -0.480007
2013-01-01 00:09:00 -0.759806 -0.815984 2.699401
我们都是南
In [24]: mask_0 = pd.isnull(df).all(axis=1)
In [25]: mask_0
Out[25]:
2013-01-01 00:00:00 False
2013-01-01 00:01:00 True
2013-01-01 00:02:00 True
2013-01-01 00:03:00 False
2013-01-01 00:04:00 False
2013-01-01 00:05:00 False
2013-01-01 00:06:00 False
2013-01-01 00:07:00 False
2013-01-01 00:08:00 False
2013-01-01 00:09:00 False
Freq: T, dtype: bool
我们要传播的那些 A
In [26]: mask_fill = pd.isnull(df['B']) & pd.isnull(df['C'])
In [27]: mask_fill
Out[27]:
2013-01-01 00:00:00 False
2013-01-01 00:01:00 True
2013-01-01 00:02:00 True
2013-01-01 00:03:00 False
2013-01-01 00:04:00 False
2013-01-01 00:05:00 True
2013-01-01 00:06:00 True
2013-01-01 00:07:00 True
2013-01-01 00:08:00 False
2013-01-01 00:09:00 False
Freq: T, dtype: bool
先发扬光大
In [28]: df.loc[mask_fill,'C'] = df['A']
In [29]: df.loc[mask_fill,'B'] = df['A']
填充 0
In [30]: df.loc[mask_0] = 0
完毕
In [31]: df
Out[31]:
A B C
2013-01-01 00:00:00 -0.486149 0.156894 -0.272362
2013-01-01 00:01:00 0.000000 0.000000 0.000000
2013-01-01 00:02:00 0.000000 0.000000 0.000000
2013-01-01 00:03:00 1.788240 -0.593195 0.059606
2013-01-01 00:04:00 1.097781 0.835491 -0.855468
2013-01-01 00:05:00 0.753991 0.753991 0.753991
2013-01-01 00:06:00 -0.456790 -0.456790 -0.456790
2013-01-01 00:07:00 -0.479704 -0.479704 -0.479704
2013-01-01 00:08:00 1.332830 1.276571 -0.480007
2013-01-01 00:09:00 -0.759806 -0.815984 2.699401