我相信我找到了答案,诀窍是在列表中上下移动子树,这样您就不会在旋转时覆盖有效节点。
void shiftUp(int indx, int towards) {
if (indx >= size || nodes[indx].key == NULL) {
return;
}
nodes[towards] = nodes[indx];
nodes[indx].key = NULL;
shiftUp(lChild(indx), lChild(towards));
shiftUp(rChild(indx), rChild(towards));
}
void shiftDown(int indx, int towards) {
if (indx >= size || nodes[indx].key == NULL) {
return;
}
// increase size so we can finish shifting down
while (towards >= size) { // while in the case we don't make it big enough
enlarge();
}
shiftDown(lChild(indx), lChild(towards));
shiftDown(rChild(indx), rChild(towards));
nodes[towards] = nodes[indx];
nodes[indx].key = NULL;
}
正如您所看到的,这是通过递归地探索每个子树直到 NULL(在此定义为 -1)节点然后一个接一个地向上或向下复制每个元素来完成的。
有了这个,我们可以定义根据这个维基百科 Tree_Rebalancing.gif命名的 4 种旋转类型
void rotateRight(int rootIndx) {
int pivotIndx = lChild(rootIndx);
// shift the roots right subtree down to the right
shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
nodes[rChild(rootIndx)] = nodes[rootIndx]; // move root too
// move the pivots right child to the roots right child's left child
shiftDown(rChild(pivotIndx), lChild(rChild(rootIndx)));
// move the pivot up to the root
shiftUp(pivotIndx, rootIndx);
// adjust balances of nodes in their new positions
nodes[rootIndx].balance--; // old pivot
nodes[rChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}
void rotateLeft(int rootIndx) {
int pivotIndx = rChild(rootIndx);
// Shift the roots left subtree down to the left
shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
nodes[lChild(rootIndx)] = nodes[rootIndx]; // move root too
// move the pivots left child to the roots left child's right child
shiftDown(lChild(pivotIndx), rChild(lChild(rootIndx)));
// move the pivot up to the root
shiftUp(pivotIndx, rootIndx);
// adjust balances of nodes in their new positions
nodes[rootIndx].balance++; // old pivot
nodes[lChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}
// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateLeftRight(int rootIndx) {
int newRootIndx = rChild(lChild(rootIndx));
// shift the root's right subtree down to the right
shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
nodes[rChild(rootIndx)] = nodes[rootIndx];
// move the new roots right child to the roots right child's left child
shiftUp(rChild(newRootIndx), lChild(rChild(rootIndx)));
// move the new root node into the root node
nodes[rootIndx] = nodes[newRootIndx];
nodes[newRootIndx].key = NULL;
// shift up to where the new root was, it's left child
shiftUp(lChild(newRootIndx), newRootIndx);
// adjust balances of nodes in their new positions
if (nodes[rootIndx].balance == -1) { // new root
nodes[rChild(rootIndx)].balance = 0; // old root
nodes[lChild(rootIndx)].balance = 1; // left from old root
} else if (nodes[rootIndx].balance == 0) {
nodes[rChild(rootIndx)].balance = 0;
nodes[lChild(rootIndx)].balance = 0;
} else {
nodes[rChild(rootIndx)].balance = -1;
nodes[lChild(rootIndx)].balance = 0;
}
nodes[rootIndx].balance = 0;
}
// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateRightLeft(int rootIndx) {
int newRootIndx = lChild(rChild(rootIndx));
// shift the root's left subtree down to the left
shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
nodes[lChild(rootIndx)] = nodes[rootIndx];
// move the new roots left child to the roots left child's right child
shiftUp(lChild(newRootIndx), rChild(lChild(rootIndx)));
// move the new root node into the root node
nodes[rootIndx] = nodes[newRootIndx];
nodes[newRootIndx].key = NULL;
// shift up to where the new root was it's right child
shiftUp(rChild(newRootIndx), newRootIndx);
// adjust balances of nodes in their new positions
if (nodes[rootIndx].balance == 1) { // new root
nodes[lChild(rootIndx)].balance = 0; // old root
nodes[rChild(rootIndx)].balance = -1; // right from old root
} else if (nodes[rootIndx].balance == 0) {
nodes[lChild(rootIndx)].balance = 0;
nodes[rChild(rootIndx)].balance = 0;
} else {
nodes[lChild(rootIndx)].balance = 1;
nodes[rChild(rootIndx)].balance = 0;
}
nodes[rootIndx].balance = 0;
}
请注意,在移位会覆盖节点的情况下,我们只需复制单个节点
至于在每个节点中存储余额的效率是必须的,因为在每个节点处获取高度差异将非常昂贵
int getHeight(int indx) {
if (indx >= size || nodes[indx].key == NULL) {
return 0;
} else {
return max(getHeight(lChild(indx)) + 1, getHeight(rChild(indx)) + 1);
}
}
尽管这样做需要我们在修改列表时更新受影响节点的余额,但通过仅更新严格必要的情况,这可能会有些效率。对于删除,此调整是
// requires non null node index and a balance factor baised off whitch child of it's parent it is or 0
private void deleteNode(int i, short balance) {
int lChildIndx = lChild(i);
int rChildIndx = rChild(i);
count--;
if (nodes[lChildIndx].key == NULL) {
if (nodes[rChildIndx].key == NULL) {
// root or leaf
nodes[i].key = NULL;
if (i != 0) {
deleteBalance(parent(i), balance);
}
} else {
shiftUp(rChildIndx, i);
deleteBalance(i, 0);
}
} else if (nodes[rChildIndx].key == NULL) {
shiftUp(lChildIndx, i);
deleteBalance(i, 0);
} else {
int successorIndx = rChildIndx;
// replace node with smallest child in the right subtree
if (nodes[lChild(successorIndx)].key == NULL) {
nodes[successorIndx].balance = nodes[i].balance;
shiftUp(successorIndx, i);
deleteBalance(successorIndx, 1);
} else {
int tempLeft;
while ((tempLeft = lChild(successorIndx)) != NULL) {
successorIndx = tempLeft;
}
nodes[successorIndx].balance = nodes[i].balance;
nodes[i] = nodes[successorIndx];
shiftUp(rChild(successorIndx), successorIndx);
deleteBalance(parent(successorIndx), -1);
}
}
}
同样对于插入这是
void insertBalance(int pviotIndx, short balance) {
while (pviotIndx != NULL) {
balance = (nodes[pviotIndx].balance += balance);
if (balance == 0) {
return;
} else if (balance == 2) {
if (nodes[lChild(pviotIndx)].balance == 1) {
rotateRight(pviotIndx);
} else {
rotateLeftRight(pviotIndx);
}
return;
} else if (balance == -2) {
if (nodes[rChild(pviotIndx)].balance == -1) {
rotateLeft(pviotIndx);
} else {
rotateRightLeft(pviotIndx);
}
return;
}
int p = parent(pviotIndx);
if (p != NULL) {
balance = lChild(p) == pviotIndx ? (short)1 : (short)-1;
}
pviotIndx = p;
}
}
正如你所看到的,这只是使用“节点”的普通数组,因为我从给定gitHub array-avl-tree和优化和平衡的 c 代码翻译它(我将在评论中发布的链接)但在一个列表
最后,我对 AVL 树或最佳实现知之甚少,所以我不声称这是没有错误或最有效的,但至少出于我的目的已经通过了我的初步测试