0

我目前拥有的是一个非常幼稚的实现,它将数据分块并处理它。对于 816mb 的文件,它运行大约 34 秒,但我希望它比这更快。我已经对其进行了分析,以查看哪些位花费的时间最多,但大部分花费大量时间的内容都集中在 python 模块函数上。结果,我不知道我可以做些什么来提高性能。非常欢迎任何和所有帮助。我在下面包含了配置文件和相关代码。

Sun May  5 02:10:28 2013    chunking.prof

         50868044 function calls in 42.901 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
   358204   13.791    0.000   30.722    0.000 reader_variants.py:361(_unpack_from)
  7164080    7.331    0.000   10.812    0.000 reader_variants.py:116(_null_terminate)
 10029712    4.762    0.000    4.762    0.000 reader_variants.py:210(_missing_values_mod)
        1    4.117    4.117    4.117    4.117 {numpy.core.multiarray.array}
   716407    3.751    0.000    5.927    0.000 {map}
 17193696    2.176    0.000    2.176    0.000 reader_variants.py:358(<lambda>)
  7164080    1.906    0.000    1.906    0.000 {method 'lstrip' of 'str' objects}
  7164080    1.574    0.000    1.574    0.000 {method 'index' of 'str' objects}
   358204    1.204    0.000   37.672    0.000 reader_variants.py:353(parse_records)
   358204    1.135    0.000    1.135    0.000 {_struct.unpack_from}
        1    0.417    0.417   42.901   42.901 <string>:1(<module>)
      779    0.349    0.000   38.021    0.049 reader_variants.py:349(process_chunk)
      779    0.330    0.000    0.330    0.000 {method 'read' of 'file' objects}
   358983    0.041    0.000    0.041    0.000 {len}
        1    0.009    0.009   42.484   42.484 reader_variants.py:306(genfromdta_cc)
      779    0.006    0.000    0.006    0.000 {method 'extend' of 'list' objects}
       48    0.000    0.000    0.000    0.000 reader_variants.py:324(<lambda>)
        1    0.000    0.000    4.117    4.117 numeric.py:256(asarray)
        1    0.000    0.000    0.000    0.000 {method 'seek' of 'file' objects}
        1    0.000    0.000    0.000    0.000 {sum}
        1    0.000    0.000    0.000    0.000 {method 'join' of 'str' objects}
        1    0.000    0.000    0.000    0.000 {zip}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}




def genfromdta_cc(self, missing_flt=-999., encoding=None, pandas=False,
                    convert_dates=True, size=1024*1024): # default chunk size 1mb
        """
        reads stata data by chunking the file
        """
        try:
            self._file.seek(self._data_location)
        except Exception:
            pass

        nobs = self._header['nobs']
        varnames = self._header['varlist']
        typlist = self._header['typlist']
        types = self._header['dtyplist']

        dt = np.dtype(zip(varnames, types))
        data=[]

        fmt = ''.join(map(lambda x: str(x)+'s' if type(x) is int else x, typlist))
        record_size = sum(self._col_sizes)

        maxrecords = size/record_size # max number of records we can fit in size

        if maxrecords > nobs: # if the file is smaller than the ideal chunk size
            chunk_size = nobs*record_size # read the entire file in
        else:   
            chunk_size = maxrecords * record_size
            chunk_size_leftover = (nobs*record_size)%chunk_size

        numchunks = nobs / maxrecords # number of chunks
        numchunks_leftover = nobs % maxrecords #number of records left over

        for i in xrange(numchunks):
            chunk = self._file.read(chunk_size)
            data.extend(self.process_chunk(chunk, fmt, record_size, missing_flt))

        # last chunk contains less than max number of records
        if numchunks_leftover > 0:
            chunk = self._file.read(chunk_size_leftover)
            data.extend(self.process_chunk(chunk, fmt, record_size, missing_flt))

        return np.asarray(data, dtype=dt) # return data as numpy array

def process_chunk(self, chunk, fmt, record_size, missing_flt):      
        iternum = len(chunk)/record_size #number of records to read
        return [self.parse_records(chunk, fmt, record_size, missing_flt, i) for i in xrange(iternum)]

def parse_records(self, chunk, fmt, record_size, missing_flt, offset):
        # create record
        record = self._unpack_from(fmt, chunk, record_size*offset)
        # check to see if None in record
        if None in record:
            record = map(lambda x: missing_flt if x is None else x, record)
        return tuple(record)

def _unpack_from(self, fmt, byt, offset):
        typlist = self._header['typlist']
        d = map(None, unpack_from(self._header['byteorder']+fmt, byt, offset))
        d = [self._null_terminate(d[i], self._encoding) if type(typlist[i]) is int else self._missing_values_mod(d[i], typlist[i]) for i in xrange(len(d))]         
        return d
4

1 回答 1

1

您可以采取的一种方法是将整个文件读入内存。假设您有几 GB 的 RAM(即使在几年前的 PC 上也不少见),那么 816 MB 应该适合 RAM。在这种情况下,您可以取消分块;

import struct

with open('datafile.bin', 'r') as df:
    rawdata = df.read()

fmt = '17s244s244s53sh203s68sh14sff203s192s192s192s192s192s22sffffff23s36sffffff12s11s23s21sdhhfdfdfdfdf'
recsz = struct.calcsize(fmt)

results = []
for offset in xrange(0, len(rawdata)/recsize):
    results.append(struct.unpack_from(rawdata, fmt, offset))

从您的代码看来,记录的大小是恒定的?因此,即使您不想将整个文件读入内存,也可以按记录大小读取文件;

import struct

fmt = '17s244s244s53sh203s68sh14sff203s192s192s192s192s192s22sffffff23s36sffffff12s11s23s21sdhhfdfdfdfdf'
recsz = struct.calcsize(fmt)

results = []
with open('datafile.bin', 'r') as df:
    s = df.read(recsz)
    results.append(struct.unpack(fmt, s))

这种方法也可以使用multiprocessing.Pool.map(). 因此,如果您有n 个内核,则可以有n 个进程读取和解包记录。充其量这可以将您需要的时间减少到 1/ n。(实际上需要更多时间,因为必须对记录进行腌制并发送回主进程。)

(注意:您可以向我们展示您正在阅读的数据类型,例如您使用的格式字符串。)

于 2013-05-05T08:24:27.487 回答