我有一些问题,我很感激一些帮助。
head(new.data)
WSZ_Code Treatment_Code Year Month TTHM CL2_FREE BrO3 Colour PH TURB seasons
1 2 3 1996 1 30.7 0.35 0.5000750 0.75 7.4 0.055 winter
2 6 1 1996 2 24.8 0.25 0.5001375 0.75 6.9 0.200 winter
3 7 4 1996 2 60.4 0.05 0.5001375 0.75 7.1 0.055 winter
4 7 4 1996 2 58.1 0.15 0.5001570 0.75 7.5 0.055 winter
5 7 4 1996 3 62.2 0.20 0.5003881 2.00 7.6 0.055 spring
6 5 2 1996 3 40.3 0.15 0.5003500 2.00 7.7 0.055 spring
library(nlme)
> mod3 <- lme(TTHM ~ CL2_FREE, random= ~ 1| Treatment_Code/WSZ_Code, data=new.data, method ="ML")
> mod3
Linear mixed-effects model fit by maximum likelihood
Data: new.data
Log-likelihood: -1401.529
Fixed: TTHM ~ CL2_FREE
(Intercept) CL2_FREE
54.45240 -40.15033
Random effects:
Formula: ~1 | Treatment_Code
(Intercept)
StdDev: 0.004156934
Formula: ~1 | WSZ_Code %in% Treatment_Code
(Intercept) Residual
StdDev: 10.90637 13.52372
Number of Observations: 345
Number of Groups:
Treatment_Code WSZ_Code %in% Treatment_Code
4 8
> plot(augPred(mod3))
Error in plot(augPred(mod3)) :
error in evaluating the argument 'x' in selecting a method for function 'plot': Error in sprintf(gettext(fmt, domain = domain), ...) :
invalid type of argument[1]: 'symbol'
我不确定为什么会收到此错误。ranef 情节似乎还可以
plot(ranef(mod3))
但这仅给出了随机截距的值,没有给出 TTHM 预测。我正在寻找一种方法来绘制典型的 augPred 中的预测,这将显示每个区域的所有随机效应。希望这是有道理的。