这不应该只是工作(tm)吗?
>>> score = 0
>>> for i in xrange(len(seq1)):
score += similarity[seq1[i], seq2[i], qual1[i], qual2[i]]
...
>>> score
498.71792400493433
>>> similarity[seq1,seq2, qual1, qual2].sum()
498.71792400493433
代码:
import numpy as np
similarity = np.random.random((32, 32, 100, 100))
n = 1000
seq1, seq2, qual1, qual2 = [np.random.randint(0, s, n) for s in similarity.shape]
def slow():
score = 0
for i in xrange(len(seq1)):
score += similarity[seq1[i], seq2[i], qual1[i], qual2[i]]
return score
def fast():
return similarity[seq1, seq2, qual1, qual2].sum()
给出:
>>> timeit slow()
100 loops, best of 3: 3.59 ms per loop
>>> timeit fast()
10000 loops, best of 3: 143 us per loop
>>> np.allclose(slow(),fast())
True