您可以从以下站点学习一些 OpenMP 概念和指令开始:A 初学者的 OpenMP 入门
您需要一个与 OpenMP 兼容的编译器。这是一个可以工作的编译器列表。您将希望-fopenmp
在编译代码时使用该选项。
我只是将编译器指令添加#pragma omp parallel for
到您的代码中,以告诉编译器以下代码块可以并行运行。通过将 while 循环更改为 for 循环,或者在整个函数中应用 OpenMP 模式,您可以看到额外的性能提升。omp_set_num_threads()
您可以通过在这些块之前使用函数来调整用于执行 for 循环的线程数来调整性能。一个好的数字是 8,因为您将在 8 核处理器上运行。
lev_edit_distance(size_t len1, const lev_byte *string1,
size_t len2, const lev_byte *string2,
int xcost)
{
size_t i;
size_t *row; /* we only need to keep one row of costs */
size_t *end;
size_t half;
// Set the number of threads the OpenMP framework will use to parallelize the for loops
omp_set_num_threads(8);
/* strip common prefix */
while (len1 > 0 && len2 > 0 && *string1 == *string2) {
len1--;
len2--;
string1++;
string2++;
}
/* strip common suffix */
while (len1 > 0 && len2 > 0 && string1[len1-1] == string2[len2-1]) {
len1--;
len2--;
}
/* catch trivial cases */
if (len1 == 0)
return len2;
if (len2 == 0)
return len1;
/* make the inner cycle (i.e. string2) the longer one */
if (len1 > len2) {
size_t nx = len1;
const lev_byte *sx = string1;
len1 = len2;
len2 = nx;
string1 = string2;
string2 = sx;
}
/* check len1 == 1 separately */
if (len1 == 1) {
if (xcost)
return len2 + 1 - 2*(memchr(string2, *string1, len2) != NULL);
else
return len2 - (memchr(string2, *string1, len2) != NULL);
}
len1++;
len2++;
half = len1 >> 1;
/* initalize first row */
row = (size_t*)malloc(len2*sizeof(size_t));
if (!row)
return (size_t)(-1);
end = row + len2 - 1;
#pragma omp parallel for
for (i = 0; i < len2 - (xcost ? 0 : half); i++)
row[i] = i;
/* go through the matrix and compute the costs. yes, this is an extremely
* obfuscated version, but also extremely memory-conservative and relatively
* fast. */
if (xcost) {
#pragma omp parallel for
for (i = 1; i < len1; i++) {
size_t *p = row + 1;
const lev_byte char1 = string1[i - 1];
const lev_byte *char2p = string2;
size_t D = i;
size_t x = i;
while (p <= end) {
if (char1 == *(char2p++))
x = --D;
else
x++;
D = *p;
D++;
if (x > D)
x = D;
*(p++) = x;
}
}
}
else {
/* in this case we don't have to scan two corner triangles (of size len1/2)
* in the matrix because no best path can go throught them. note this
* breaks when len1 == len2 == 2 so the memchr() special case above is
* necessary */
row[0] = len1 - half - 1;
#pragma omp parallel for
for (i = 1; i < len1; i++) {
size_t *p;
const lev_byte char1 = string1[i - 1];
const lev_byte *char2p;
size_t D, x;
/* skip the upper triangle */
if (i >= len1 - half) {
size_t offset = i - (len1 - half);
size_t c3;
char2p = string2 + offset;
p = row + offset;
c3 = *(p++) + (char1 != *(char2p++));
x = *p;
x++;
D = x;
if (x > c3)
x = c3;
*(p++) = x;
}
else {
p = row + 1;
char2p = string2;
D = x = i;
}
/* skip the lower triangle */
if (i <= half + 1)
end = row + len2 + i - half - 2;
/* main */
while (p <= end) {
size_t c3 = --D + (char1 != *(char2p++));
x++;
if (x > c3)
x = c3;
D = *p;
D++;
if (x > D)
x = D;
*(p++) = x;
}
/* lower triangle sentinel */
if (i <= half) {
size_t c3 = --D + (char1 != *char2p);
x++;
if (x > c3)
x = c3;
*p = x;
}
}
}
i = *end;
free(row);
return i;
}
您还可以对 for 循环中正在操作的变量进行归约操作,以提供简单的并行计算,如求和、乘法等。
int main()
{
int i = 0,
j = 0,
sum = 0;
char str1[30]; // Change size to fit your specifications
char str2[30];
#pragma omp parallel for
for(i=0;i<16;i++)
{
sum = 0;
// Could do a reduction on sum across all threads
for(j=0;j<1000;j++)
{
// Calls will have to be changed
// I don't know much Python so I'll leave that to the experts
str1 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
str2 = bin(random.getrandbits(2**i))[2:].zfill(2**i)
sum += distance(str1,str2)
}
printf("%d %d",i,(sum/(1000*2*i)));
}
}