1

我正在寻找已经提供的关于使用包的(开发版本)的功能创建具有连续和分类变量的交互图的惊人答案的详细说明。predictlme4

我已经运行了一个模型,其中三个分类变量之间存在交互作用:discount_i(0/1)、rank_i(0/1) 和msg(“No norm”、“Provincial”和“Norm”),包括受试者随机效应 ( id)。我的结果变量 ( choice) 是二分法。具体来说,我的命令是:

m1 <- glmer(choice ~ msg*discount_i*rank_i + (1|id), data=df, family="binomial")

然后我创建一个预测框架:

predframe <- with(df,expand.grid(rank_i=levels(rank_i),msg=levels(msg),discount_i=levels(discount_i)))

并使用预测功能(已编辑)

predframe$pred.logit <- predict(m1,newdata=predframe,REform=NA)

然而,这是我与@mnel 的指示分道扬镳的地方。我将如何绘制因子变量之间的三向交互,而不是因子变量和连续变量之间的双向交互?

下面的示例数据:

> dput(df[1:700,2:6])
structure(list(time = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), choice = c(1, 1, 
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 
1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 
1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 
0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 
0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 
1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 
1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 
1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 
1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 
1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 
1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 
0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 
1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 
0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 
1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 
0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 
1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 
1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 
0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 
1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 
1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 
1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 
1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 
1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 
1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 
0, 1, 0, 1, 0), msg = structure(c(3L, 1L, 1L, 2L, 3L, 1L, 3L, 
3L, 3L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 1L, 3L, 2L, 3L, 1L, 1L, 3L, 
1L, 2L, 3L, 3L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 2L, 3L, 3L, 2L, 3L, 
3L, 1L, 3L, 1L, 2L, 2L, 3L, 2L, 3L, 3L, 2L, 3L, 3L, 1L, 2L, 3L, 
3L, 1L, 2L, 3L, 2L, 3L, 3L, 1L, 1L, 3L, 1L, 3L, 2L, 1L, 3L, 2L, 
3L, 3L, 2L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 1L, 
3L, 2L, 3L, 2L, 3L, 3L, 3L, 1L, 1L, 3L, 1L, 2L, 2L, 3L, 2L, 3L, 
3L, 2L, 2L, 3L, 2L, 1L, 2L, 1L, 3L, 2L, 2L, 1L, 3L, 3L, 2L, 3L, 
3L, 3L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 2L, 2L, 
1L, 1L, 3L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 
2L, 1L, 2L, 1L, 1L, 3L, 3L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 3L, 
3L, 1L, 2L, 3L, 1L, 1L, 3L, 2L, 2L, 3L, 3L, 1L, 1L, 1L, 2L, 1L, 
2L, 3L, 3L, 2L, 1L, 2L, 3L, 1L, 2L, 2L, 1L, 3L, 3L, 1L, 1L, 1L, 
3L, 2L, 3L, 1L, 2L, 2L, 3L, 2L, 1L, 3L, 1L, 2L, 2L, 3L, 3L, 2L, 
1L, 3L, 3L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 3L, 2L, 2L, 1L, 2L, 2L, 3L, 1L, 1L, 2L, 3L, 2L, 3L, 3L, 
3L, 3L, 1L, 3L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 3L, 3L, 2L, 1L, 1L, 
2L, 1L, 2L, 3L, 3L, 3L, 1L, 2L, 2L, 3L, 1L, 3L, 1L, 3L, 3L, 1L, 
1L, 3L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 
1L, 2L, 2L, 1L, 2L, 3L, 3L, 3L, 2L, 3L, 1L, 3L, 1L, 2L, 3L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 2L, 3L, 2L, 1L, 3L, 3L, 
3L, 1L, 3L, 3L, 1L, 3L, 1L, 3L, 2L, 1L, 3L, 1L, 1L, 2L, 2L, 3L, 
1L, 3L, 3L, 3L, 1L, 3L, 1L, 3L, 2L, 1L, 2L, 1L, 1L, 2L, 3L, 3L, 
3L, 3L, 3L, 2L, 2L, 3L, 2L, 1L, 1L, 2L, 1L, 2L, 3L, 3L, 1L, 1L, 
1L, 3L, 3L, 1L, 1L, 3L, 1L, 2L, 3L, 1L, 1L, 3L, 2L, 1L, 3L, 3L, 
3L, 1L, 3L, 1L, 3L, 1L, 3L, 2L, 3L, 2L, 2L, 1L, 2L, 1L, 3L, 2L, 
2L, 3L, 1L, 2L, 1L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 
1L, 1L, 3L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 2L, 1L, 2L, 3L, 2L, 3L, 
2L, 3L, 1L, 3L, 1L, 3L, 1L, 1L, 3L, 1L, 3L, 2L, 3L, 2L, 1L, 1L, 
1L, 2L, 2L, 1L, 2L, 1L, 3L, 1L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 1L, 
1L, 3L, 1L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 3L, 2L, 1L, 3L, 2L, 2L, 
1L, 1L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 2L, 2L, 3L, 1L, 
2L, 2L, 3L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 3L, 1L, 3L, 
1L, 1L, 3L, 3L, 3L, 2L, 3L, 2L, 2L, 3L, 1L, 2L, 3L, 3L, 2L, 2L, 
1L, 2L, 3L, 2L, 1L, 2L, 3L, 3L, 2L, 2L, 2L, 3L, 1L, 2L, 3L, 2L, 
3L, 3L, 3L, 3L, 1L, 2L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 1L, 1L, 2L, 
2L, 3L, 3L, 1L, 1L, 3L, 1L, 1L, 1L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 
2L, 2L, 3L, 3L, 3L, 1L, 3L, 2L, 2L, 1L, 2L, 3L, 1L, 3L, 2L, 3L, 
1L, 2L, 3L, 2L, 1L, 2L, 3L, 3L, 3L, 3L, 2L, 3L, 2L, 3L, 3L, 2L, 
1L, 2L, 3L, 2L, 1L, 2L, 1L, 3L, 1L, 3L, 1L, 1L, 2L, 1L, 3L, 1L, 
2L, 2L, 3L, 2L, 2L, 3L, 3L, 1L, 3L, 1L, 3L, 2L, 1L, 3L, 1L, 2L, 
1L, 3L, 1L, 3L, 1L, 1L, 2L, 1L, 3L, 2L, 3L, 3L, 3L, 1L, 3L, 3L, 
2L, 2L, 1L, 2L, 2L, 2L, 2L, 3L, 1L, 1L, 1L, 2L, 3L, 2L, 3L, 1L, 
3L, 3L, 3L, 1L, 3L, 3L, 2L, 2L, 3L, 2L, 2L, 3L, 2L, 1L, 2L, 3L, 
2L, 2L, 1L, 3L, 2L), .Label = c("No norm", "Norm", "Provincial"
), class = "factor"), discount_i = structure(c(1L, 2L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 
2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 
1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 
2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 
2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 
2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 
1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 
1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 
2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 
1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 
2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 
1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 
2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 
2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 
1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 
2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 
1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 
2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 
1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 
2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 
1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L), .Label = c("0", "1"), class = "factor"), 
    rank_i = structure(c(1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 
    2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 
    2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 
    1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
    1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 
    1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
    1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 
    2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 
    2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 
    2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 
    2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 
    2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
    2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 
    2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 
    2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 
    1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 
    1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
    2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 
    2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 
    1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 
    2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 
    1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 
    1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
    2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 
    1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 
    2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 
    2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 
    1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 
    2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 
    2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 
    2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 
    1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 
    1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
    1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 
    1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 
    2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 
    1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 
    1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 
    2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 
    2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 
    1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 
    2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
    1L), .Label = c("0", "1"), class = "factor")), .Names = c("time", 
"choice", "msg", "discount_i", "rank_i"), row.names = c("1.1", 
"2.1", "3.1", "4.1", "5.1", "6.1", "7.1", "8.1", "9.1", "10.1", 
"11.1", "12.1", "13.1", "14.1", "15.1", "16.1", "17.1", "18.1", 
"19.1", "20.1", "21.1", "22.1", "23.1", "24.1", "25.1", "26.1", 
"27.1", "28.1", "29.1", "30.1", "31.1", "32.1", "33.1", "34.1", 
"35.1", "36.1", "37.1", "38.1", "39.1", "40.1", "41.1", "42.1", 
"43.1", "44.1", "45.1", "46.1", "47.1", "48.1", "49.1", "50.1", 
"51.1", "52.1", "53.1", "54.1", "55.1", "56.1", "57.1", "58.1", 
"59.1", "60.1", "61.1", "62.1", "63.1", "64.1", "65.1", "66.1", 
"67.1", "68.1", "69.1", "70.1", "71.1", "72.1", "73.1", "74.1", 
"75.1", "76.1", "77.1", "78.1", "79.1", "80.1", "81.1", "82.1", 
"83.1", "84.1", "85.1", "86.1", "87.1", "88.1", "89.1", "90.1", 
"91.1", "92.1", "93.1", "94.1", "95.1", "96.1", "97.1", "98.1", 
"99.1", "100.1", "101.1", "102.1", "103.1", "104.1", "105.1", 
"106.1", "107.1", "108.1", "109.1", "110.1", "111.1", "112.1", 
"113.1", "114.1", "115.1", "116.1", "117.1", "118.1", "119.1", 
"120.1", "121.1", "122.1", "123.1", "124.1", "125.1", "126.1", 
"127.1", "128.1", "129.1", "130.1", "131.1", "132.1", "133.1", 
"134.1", "135.1", "136.1", "137.1", "138.1", "139.1", "140.1", 
"141.1", "142.1", "143.1", "144.1", "145.1", "146.1", "147.1", 
"148.1", "149.1", "150.1", "151.1", "152.1", "153.1", "154.1", 
"155.1", "156.1", "157.1", "158.1", "159.1", "160.1", "161.1", 
"162.1", "163.1", "164.1", "165.1", "166.1", "167.1", "168.1", 
"169.1", "170.1", "171.1", "172.1", "173.1", "174.1", "175.1", 
"176.1", "177.1", "178.1", "179.1", "180.1", "181.1", "182.1", 
"183.1", "184.1", "185.1", "186.1", "187.1", "188.1", "189.1", 
"190.1", "191.1", "192.1", "193.1", "194.1", "195.1", "196.1", 
"197.1", "198.1", "199.1", "200.1", "201.1", "202.1", "203.1", 
"204.1", "205.1", "206.1", "207.1", "208.1", "209.1", "210.1", 
"211.1", "212.1", "213.1", "214.1", "215.1", "216.1", "217.1", 
"218.1", "219.1", "220.1", "221.1", "222.1", "223.1", "224.1", 
"225.1", "226.1", "227.1", "228.1", "229.1", "230.1", "231.1", 
"232.1", "233.1", "234.1", "235.1", "236.1", "237.1", "238.1", 
"239.1", "240.1", "241.1", "242.1", "243.1", "244.1", "245.1", 
"246.1", "247.1", "248.1", "249.1", "250.1", "251.1", "252.1", 
"253.1", "254.1", "255.1", "256.1", "257.1", "258.1", "259.1", 
"260.1", "261.1", "262.1", "263.1", "264.1", "265.1", "266.1", 
"267.1", "268.1", "269.1", "270.1", "271.1", "272.1", "273.1", 
"274.1", "275.1", "276.1", "277.1", "278.1", "279.1", "280.1", 
"281.1", "282.1", "283.1", "284.1", "285.1", "286.1", "287.1", 
"288.1", "289.1", "290.1", "291.1", "292.1", "293.1", "294.1", 
"295.1", "296.1", "297.1", "298.1", "299.1", "300.1", "301.1", 
"302.1", "303.1", "304.1", "305.1", "306.1", "307.1", "308.1", 
"309.1", "310.1", "311.1", "312.1", "313.1", "314.1", "315.1", 
"316.1", "317.1", "318.1", "319.1", "320.1", "321.1", "322.1", 
"323.1", "324.1", "325.1", "326.1", "327.1", "328.1", "329.1", 
"330.1", "331.1", "332.1", "333.1", "334.1", "335.1", "336.1", 
"337.1", "338.1", "339.1", "340.1", "341.1", "342.1", "343.1", 
"344.1", "345.1", "346.1", "347.1", "348.1", "349.1", "350.1", 
"351.1", "352.1", "353.1", "354.1", "355.1", "356.1", "357.1", 
"358.1", "359.1", "360.1", "361.1", "362.1", "363.1", "364.1", 
"365.1", "366.1", "367.1", "368.1", "369.1", "370.1", "371.1", 
"372.1", "373.1", "374.1", "375.1", "376.1", "377.1", "378.1", 
"379.1", "380.1", "381.1", "382.1", "383.1", "384.1", "385.1", 
"386.1", "387.1", "388.1", "389.1", "390.1", "391.1", "392.1", 
"393.1", "394.1", "395.1", "396.1", "397.1", "398.1", "399.1", 
"400.1", "401.1", "402.1", "403.1", "404.1", "405.1", "406.1", 
"407.1", "408.1", "409.1", "410.1", "411.1", "412.1", "413.1", 
"414.1", "415.1", "416.1", "417.1", "418.1", "419.1", "420.1", 
"421.1", "422.1", "423.1", "424.1", "425.1", "426.1", "427.1", 
"428.1", "429.1", "430.1", "431.1", "432.1", "433.1", "434.1", 
"435.1", "436.1", "437.1", "438.1", "439.1", "440.1", "441.1", 
"442.1", "443.1", "444.1", "445.1", "446.1", "447.1", "448.1", 
"449.1", "450.1", "451.1", "452.1", "453.1", "454.1", "455.1", 
"456.1", "457.1", "458.1", "459.1", "460.1", "461.1", "462.1", 
"463.1", "464.1", "465.1", "466.1", "467.1", "468.1", "469.1", 
"470.1", "471.1", "472.1", "473.1", "474.1", "475.1", "476.1", 
"477.1", "478.1", "479.1", "480.1", "481.1", "482.1", "483.1", 
"484.1", "485.1", "486.1", "487.1", "488.1", "489.1", "490.1", 
"491.1", "492.1", "493.1", "494.1", "495.1", "496.1", "497.1", 
"498.1", "499.1", "500.1", "501.1", "502.1", "503.1", "504.1", 
"505.1", "506.1", "507.1", "508.1", "509.1", "510.1", "511.1", 
"512.1", "513.1", "514.1", "515.1", "516.1", "517.1", "518.1", 
"519.1", "520.1", "521.1", "522.1", "523.1", "524.1", "525.1", 
"526.1", "527.1", "528.1", "529.1", "530.1", "531.1", "532.1", 
"533.1", "534.1", "535.1", "536.1", "537.1", "538.1", "539.1", 
"540.1", "541.1", "542.1", "543.1", "544.1", "545.1", "546.1", 
"547.1", "548.1", "549.1", "550.1", "551.1", "552.1", "553.1", 
"554.1", "555.1", "556.1", "557.1", "558.1", "559.1", "560.1", 
"561.1", "562.1", "563.1", "564.1", "565.1", "566.1", "567.1", 
"568.1", "569.1", "570.1", "571.1", "572.1", "573.1", "574.1", 
"575.1", "576.1", "577.1", "578.1", "579.1", "580.1", "581.1", 
"582.1", "583.1", "584.1", "585.1", "586.1", "587.1", "588.1", 
"589.1", "590.1", "591.1", "592.1", "593.1", "594.1", "595.1", 
"596.1", "597.1", "598.1", "599.1", "600.1", "601.1", "602.1", 
"603.1", "604.1", "605.1", "606.1", "607.1", "608.1", "609.1", 
"610.1", "611.1", "612.1", "613.1", "614.1", "615.1", "616.1", 
"617.1", "618.1", "619.1", "620.1", "621.1", "622.1", "623.1", 
"624.1", "625.1", "626.1", "627.1", "628.1", "629.1", "630.1", 
"631.1", "632.1", "633.1", "634.1", "635.1", "636.1", "637.1", 
"638.1", "639.1", "640.1", "641.1", "642.1", "643.1", "644.1", 
"645.1", "646.1", "647.1", "648.1", "649.1", "650.1", "651.1", 
"652.1", "653.1", "654.1", "655.1", "656.1", "657.1", "658.1", 
"659.1", "660.1", "661.1", "662.1", "663.1", "664.1", "665.1", 
"666.1", "667.1", "668.1", "669.1", "670.1", "671.1", "672.1", 
"673.1", "674.1", "675.1", "676.1", "677.1", "678.1", "679.1", 
"680.1", "681.1", "682.1", "683.1", "684.1", "685.1", "686.1", 
"687.1", "688.1", "689.1", "690.1", "691.1", "692.1", "693.1", 
"694.1", "695.1", "696.1", "697.1", "698.1", "699.1", "700.1"
), class = "data.frame")
4

1 回答 1

1

警告:尚未将 ylab="" 添加到第二个重叠绘图调用中,您可能也希望对第一个调用使用非默认 ylab。由于这个分析的细节对我来说仍然是不透明的,我并不支持它的有效性。(只需转动机器上的曲柄。)并且需要对传奇进行一些进一步的工作。此外,teh ylims 是不同的,因此可能希望将它们设置为 min 和 max c(newpred0, newpred1)

newpred0 <- predict(m1, newdata = predframe[predframe$discount_i=="0", ] ,
                     REform = NA)
interaction.plot(droplevels(predframe[predframe$discount_i=="0", ])$rank_i, 
                  droplevels(predframe[predframe$discount_i=="0", ])$msg, 
                  newpred0)
newpred1 <- predict(m1, newdata = predframe[predframe$discount_i=="1", ] ,
                     REform = NA)
par(new=TRUE);   # This is the way to overlay base graphics on top of each other
interaction.plot(droplevels(predframe[predframe$discount_i=="1", ])$rank_i, 
                 droplevels(predframe[predframe$discount_i=="1", ])$msg, newpred1, 
                 col="red")
于 2013-05-01T22:57:37.910 回答