14

假设我有一个包含索引的列表列表[[start, end], [start1, end1], [start2, end2]]

例如:

[[0, 133], [78, 100], [25, 30]].

如何检查列表之间的重叠并每次删除长度较长的列表?所以:

>>> list = [[0, 133], [78, 100], [25, 30]]
>>> foo(list)
[[78, 100], [25, 30]]

到目前为止,这是我尝试做的:

def cleanup_list(list):
    i = 0
    c = 0
    x = list[:]
    end = len(x)
    while i < end-1:
        for n in range(x[i][0], x[i][1]):
            if n in range(x[i+1][0], x[i+1][1]):
                list.remove(max(x[i], x[i+1]))
        i +=1
    return list

但除了有点复杂之外,它还不能正常工作:

 >>>cleanup_list([[0,100],[9,10],[12,90]])
 [[0, 100], [12, 90]]

任何帮助,将不胜感激!

编辑:

其他例子是:

>>>a = [[0, 100], [4, 20], [30, 35], [30, 78]]
>>>foo(a)
[[4, 20], [30, 35]]

>>>b = [[30, 70], [25, 40]]
>>>foo(b)
[[25, 40]]

我基本上是在尝试删除与另一个列表重叠的所有最长列表。在这种情况下,我不必担心列表的长度相等。

谢谢!!

4

5 回答 5

11

为了从列表中删除最少数量的间隔,使得剩下的间隔不重叠,O(n*log n)算法存在:

def maximize_nonoverlapping_count(intervals):
    # sort by the end-point
    L = sorted(intervals, key=lambda (start, end): (end, (end - start)),
               reverse=True) # O(n*logn)
    iv = build_interval_tree(intervals) # O(n*log n)
    result = []
    while L: # until there are intervals left to consider
        # pop the interval with the smallest end-point, keep it in the result
        result.append(L.pop()) # O(1)
        # remove intervals that overlap with the popped interval
        overlapping_intervals = iv.pop(result[-1]) # O(log n + m)
        remove(overlapping_intervals, from_=L) 
    return result

它应该产生以下结果:

f = maximize_nonoverlapping_count
assert f([[0, 133], [78, 100], [25, 30]]) == [[25, 30], [78, 100]]
assert f([[0,100],[9,10],[12,90]]) == [[9,10], [12, 90]]
assert f([[0, 100], [4, 20], [30, 35], [30, 78]]) == [[4, 20], [30, 35]]
assert f([[30, 70], [25, 40]]) == [[25, 40]]

它需要能够及时找到O(log n + m)与给定区间重叠的所有区间的数据结构,例如IntervalTree。有一些实现可以从 Python 中使用,例如quicksect.py,请参阅快速区间交集方法以了解示例用法。


这是上述算法的quicksect基于- 的实现:O(n**2)

from quicksect import IntervalNode

class Interval(object):
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.removed = False

def maximize_nonoverlapping_count(intervals):
    intervals = [Interval(start, end) for start, end in intervals]
    # sort by the end-point
    intervals.sort(key=lambda x: (x.end, (x.end - x.start)))   # O(n*log n)
    tree = build_interval_tree(intervals) # O(n*log n)
    result = []
    for smallest in intervals: # O(n) (without the loop body)
        # pop the interval with the smallest end-point, keep it in the result
        if smallest.removed:
            continue # skip removed nodes
        smallest.removed = True
        result.append([smallest.start, smallest.end]) # O(1)

        # remove (mark) intervals that overlap with the popped interval
        tree.intersect(smallest.start, smallest.end, # O(log n + m)
                       lambda x: setattr(x.other, 'removed', True))
    return result

def build_interval_tree(intervals):
    root = IntervalNode(intervals[0].start, intervals[0].end,
                        other=intervals[0])
    return reduce(lambda tree, x: tree.insert(x.start, x.end, other=x),
                  intervals[1:], root)

注意:最坏情况下的时间复杂度是O(n**2)针对此实现的,因为间隔仅被标记为已删除,例如,想象这样的输入intervalslen(result) == len(intervals) / 3并且存在len(intervals) / 2跨越整个范围的间隔,然后tree.intersect()将被调用n/3次数,并且每个调用将x.other.removed = True至少执行n/2一次,即,n*n/6总共操作:

n = 6
intervals = [[0, 100], [0, 100], [0, 100], [0, 10], [10, 20], [15, 40]])
result = [[0, 10], [10, 20]]

这是一个banyan基于- 的O(n log n)实现:

from banyan import SortedSet, OverlappingIntervalsUpdator # pip install banyan

def maximize_nonoverlapping_count(intervals):
    # sort by the end-point O(n log n)
    sorted_intervals = SortedSet(intervals,
                                 key=lambda (start, end): (end, (end - start)))
    # build "interval" tree O(n log n)
    tree = SortedSet(intervals, updator=OverlappingIntervalsUpdator)
    result = []
    while sorted_intervals: # until there are intervals left to consider
        # pop the interval with the smallest end-point, keep it in the result
        result.append(sorted_intervals.pop()) # O(log n)

        # remove intervals that overlap with the popped interval
        overlapping_intervals = tree.overlap(result[-1]) # O(m log n)
        tree -= overlapping_intervals # O(m log n)
        sorted_intervals -= overlapping_intervals # O(m log n)
    return result

注意:此实现认为[0, 10][10, 20]间隔是重叠的:

f = maximize_nonoverlapping_count
assert f([[0, 100], [0, 10], [11, 20], [15, 40]]) == [[0, 10] ,[11, 20]]
assert f([[0, 100], [0, 10], [10, 20], [15, 40]]) == [[0, 10] ,[15, 40]]

sorted_intervals并且tree可以合并:

from banyan import SortedSet, OverlappingIntervalsUpdator # pip install banyan

def maximize_nonoverlapping_count(intervals):
    # build "interval" tree sorted by the end-point O(n log n)
    tree = SortedSet(intervals, key=lambda (start, end): (end, (end - start)),
                     updator=OverlappingIntervalsUpdator)
    result = []
    while tree: # until there are intervals left to consider
        # pop the interval with the smallest end-point, keep it in the result
        result.append(tree.pop()) # O(log n)

        # remove intervals that overlap with the popped interval
        overlapping_intervals = tree.overlap(result[-1]) # O(m log n)
        tree -= overlapping_intervals # O(m log n)
    return result
于 2013-05-01T07:47:53.857 回答
3

这可能不是最快的解决方案,但非常详细和清晰 - 我认为。

a = [[2,100], [4,10], [77,99], [38,39], [44,80], [69,70], [88, 90]]

# build ranges first
def expand(list):
    newList = []
    for r in list:
        newList.append(range(r[0], r[1] + 1))
    return newList


def compare(list):
    toBeDeleted = []
    for index1 in range(len(list)):
        for index2 in range(len(list)):
            if index1 == index2:
                # we dont want to compare ourselfs
                continue
            matches = [x for x in list[index1] if x in list[index2]]
            if len(matches) != 0: # do we have overlap?
                ## compare lengths and get rid of the longer one
                if   len(list[index1]) > len(list[index2]):
                    toBeDeleted.append(index1)
                    break
                elif len(list[index1]) < len(list[index2]):
                    toBeDeleted.append(index2)
    # distinct
    toBeDeleted = [ toBeDeleted[i] for i,x in enumerate(toBeDeleted) if x not in toBeDeleted[i+1:]] 
    print len(list)
    # remove items
    for i in toBeDeleted[::-1]:
        del list[i] 
    return list


print(compare(expand(a)))
于 2013-05-01T08:42:54.107 回答
2

我认为您的代码中的一个问题是它无法处理一个列表包含另一个列表的情况。例如,[0,100]包含[9,10]. 当您在 [0,100] 中循环 n 并且 n 进入 [9,10] 时,将if n in range(x[i+1][0], x[i+1][1])触发条件语句。然后内置函数max将比较[0, 100]and [9, 10],不幸的是max会返回[9,10],因为它比较列表中的第一个数字。因此,您删除了错误的元素。

我正在尝试另一种方法来达到你想要的效果。我没有操作列表本身,而是创建了一个新列表。如果满足我们的要求,则有条件地将新元素附加到它。

def cleanup_list(lists):
    ranges = []
    for l in lists:
        to_insert = True
        for i in ranges:
            r = range(i[0],i[1])
            # if l overlaps with i, but l does not contain i
            if l[0] in r or l[1] in r:
                if (l[1]-l[0]) < len(r):
                    ranges.remove(i)
                else:
                    to_insert = False
            # l contains i
            if l[0]<i[0] and l[1]>i[1]:
                to_insert = False
        if to_insert:
            ranges.append(l)
    return ranges
于 2013-05-01T06:08:11.950 回答
1
  1. 升序按长度对所有项目进行排序。

  2. 将它们添加到段树并忽略重叠项。

于 2013-05-01T06:07:22.160 回答
1

一般来说,两个区间重叠,如果:

min([upperBoundOfA, upperBoundOfB]) >= max([lowerBoundOfA, lowerBoundOfB])

如果是这种情况,这些区间的并集是:

(min([lowerBoundOfA, lowerBoundOfB]), max([upperBoundOfA, upperBoundOfB])

同样,这些区间的交集将是:

(min([upperBoundOfA, upperBoundOfB]), max([lowerBoundOfA, lowerBoundOfB]))
于 2013-05-01T06:32:36.333 回答