13

我已经实现了一些基于模块的主动对象设计模式。这是非常简单的实现。我有 Scheduler、ActivationList、Requests 和 Futures 来获得响应。我的要求是这样的:

  • 对活动对象的访问应通过在其自己的线程中执行其方法来序列化(主要要求和活动对象设计模式的假设)
  • 调用者应该能够指定请求执行的优先级。这意味着如果有多个请求等待执行,它们将按照分配给每个请求的优先级进行排序。具有较高优先级的请求应首先执行,因此如果始终有一些请求在 ActivationList 上挂起,并且它们的优先级高于给定的请求,则永远不会执行此请求 - 对我来说没问题
  • 应该可以指定列表中未决请求的最大数量(限制内存使用)
  • 应该可以使所有待处理的请求无效
  • 请求应该能够返回值(阻塞调用者)或者只应该在没有返回值的情况下执行,但是调用者应该被阻塞直到请求被处理或者调用者不应该被阻塞并且它是否已经处理给定的请求并不重要G
  • 就在请求执行之前,应该执行一些保护方法来检查给定的请求是否应该执行。如果不是 - 它应该向调用者返回一些未定义的值(在我当前的实现中它是 boost::none,因为每个请求返回类型都是 boost::optional)

现在好的问题:是否可以使用 boost::asio 并满足我的所有要求?我的实现正在运行,但我想使用一些可能以比我做的更好的方式实现的东西。我也想知道它的未来,不要再次“重新发明轮子”。

4

1 回答 1

35

Boost.Asio 可用于包含Active Object的意图:将方法执行与方法调用分离。需要在更高级别处理其他要求,但在将 Boost.Asio 与其他 Boost 库结合使用时,它并不过分复杂。

Scheduler可以用:

ActivationList可以实现为:

  • 用于获取最高优先级方法请求的Boost.MultiIndex 。使用 hinted-position insert(),插入顺序会保留给具有相同优先级的请求。
  • std::multiset或者std::multimap可以使用。但是,在 C++03 中未指定具有相同键(优先级)的请求顺序。
  • 如果Request不需要保护方法,则std::priority_queue可以使用。

Request可能是未指定的类型:

  • boost::function并且boost::bind可以用于提供类型擦除,同时绑定到可调用类型而不引入Request层次结构。

Futures可以使用 Boost.Thread 的Futures支持。

  • future.valid()Request如果已添加到.将返回 true ActivationList
  • future.wait()将阻止等待结果可用。
  • future.get()将阻塞等待结果。
  • 如果 caller 对 没有做任何事情future,那么 caller 将不会被阻塞。
  • 使用 Boost.Thread 的 Futures 的另一个好处是源自 a 内部的异常Request将被传递给Future.

这是一个利用各种 Boost 库的完整示例,应该满足要求:

// Standard includes
#include <algorithm> // std::find_if
#include <iostream>
#include <string>

// 3rd party includes
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#include <boost/make_shared.hpp>
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/utility/result_of.hpp>

/// @brief scheduler that provides limits with prioritized jobs.
template <typename Priority,
          typename Compare = std::less<Priority> >
class scheduler
{
public:
  typedef Priority priority_type;
private:

  /// @brief method_request is used to couple the guard and call
  ///        functions for a given method.
  struct method_request
  {
    typedef boost::function<bool()> ready_func_type;
    typedef boost::function<void()> run_func_type;

    template <typename ReadyFunctor,
              typename RunFunctor>
    method_request(ReadyFunctor ready,
                   RunFunctor run)
      : ready(ready),
        run(run)
    {}

    ready_func_type ready;
    run_func_type run;
  };

  /// @brief Pair type used to associate a request with its priority.
  typedef std::pair<priority_type,
                    boost::shared_ptr<method_request> > pair_type;

  static bool is_method_ready(const pair_type& pair)
  {
    return pair.second->ready();
  }

public:

  /// @brief Construct scheduler.
  ///
  /// @param max_threads Maximum amount of concurrent task.
  /// @param max_request Maximum amount of request.  
  scheduler(std::size_t max_threads,
            std::size_t max_request)
    : work_(io_service_),
      max_request_(max_request),
      request_count_(0)
  {
    // Spawn threads, dedicating them to the io_service.
    for (std::size_t i = 0; i < max_threads; ++i)
      threads_.create_thread(
        boost::bind(&boost::asio::io_service::run, &io_service_));
  }

  /// @brief Destructor.
  ~scheduler()
  {
    // Release threads from the io_service.
    io_service_.stop();
    // Cleanup.
    threads_.join_all();
  }

  /// @brief Insert a method request into the scheduler.
  ///
  /// @param priority Priority of job.
  /// @param ready_func Invoked to check if method is ready to run.
  /// @param run_func Invoked when ready to run.
  ///
  /// @return future associated with the method.
  template <typename ReadyFunctor,
            typename RunFunctor>
  boost::unique_future<typename boost::result_of<RunFunctor()>::type>
  insert(priority_type priority, 
         const ReadyFunctor& ready_func,
         const RunFunctor& run_func)
  {
    typedef typename boost::result_of<RunFunctor()>::type result_type;
    typedef boost::unique_future<result_type> future_type;

    boost::unique_lock<mutex_type> lock(mutex_);

    // If max request has been reached, then return an invalid future.
    if (max_request_ &&
        (request_count_ == max_request_))
      return future_type();

    ++request_count_;

    // Use a packaged task to handle populating promise and future.
    typedef boost::packaged_task<result_type> task_type;

    // Bind does not work with rvalue, and packaged_task is only moveable,
    // so allocate a shared pointer.
    boost::shared_ptr<task_type> task = 
      boost::make_shared<task_type>(run_func);

    // Create method request.
    boost::shared_ptr<method_request> request =
      boost::make_shared<method_request>(
        ready_func,
        boost::bind(&task_type::operator(), task));

    // Insert into priority.  Hint to inserting as close to the end as
    // possible to preserve insertion order for request with same priority.
    activation_list_.insert(activation_list_.end(),
                            pair_type(priority, request));

    // There is now an outstanding request, so post to dispatch.
    io_service_.post(boost::bind(&scheduler::dispatch, this));

    return task->get_future();
  }

  /// @brief Insert a method request into the scheduler.
  ///
  /// @param ready_func Invoked to check if method is ready to run.
  /// @param run_func Invoked when ready to run.
  ///
  /// @return future associated with the method.
  template <typename ReadyFunctor,
            typename RunFunctor>
  boost::unique_future<typename boost::result_of<RunFunctor()>::type>
  insert(const ReadyFunctor& ready_func,
         const RunFunctor& run_func)
  {
    return insert(priority_type(), ready_func, run_func);
  }

  /// @brief Insert a method request into the scheduler.
  ///
  /// @param priority Priority of job.
  /// @param run_func Invoked when ready to run.
  ///
  /// @return future associated with the method.
  template <typename RunFunctor>
  boost::unique_future<typename boost::result_of<RunFunctor()>::type>
  insert(priority_type priority, 
         const RunFunctor& run_func)
  {
    return insert(priority, &always_ready, run_func);
  }

  /// @brief Insert a method request with default priority into the
  ///        scheduler.
  ///
  /// @param run_func Invoked when ready to run.
  ///
  /// @param functor Job to run.
  ///
  /// @return future associated with the job.
  template <typename RunFunc>
  boost::unique_future<typename boost::result_of<RunFunc()>::type>
  insert(const RunFunc& run_func)
  {
    return insert(&always_ready, run_func);
  }

  /// @brief Cancel all outstanding request.
  void cancel()
  {
    boost::unique_lock<mutex_type> lock(mutex_);
    activation_list_.clear();
    request_count_ = 0;
  } 

private:

  /// @brief Dispatch a request.
  void dispatch()
  {
    // Get the current highest priority request ready to run from the queue.
    boost::unique_lock<mutex_type> lock(mutex_);
    if (activation_list_.empty()) return;

    // Find the highest priority method ready to run.
    typedef typename activation_list_type::iterator iterator;
    iterator end = activation_list_.end();
    iterator result = std::find_if(
      activation_list_.begin(), end, &is_method_ready);

    // If no methods are ready, then post into dispatch, as the
    // method may have become ready.
    if (end == result)
    {
      io_service_.post(boost::bind(&scheduler::dispatch, this));
      return;
    }

    // Take ownership of request.
    boost::shared_ptr<method_request> method = result->second;
    activation_list_.erase(result);

    // Run method without mutex.
    lock.unlock();
    method->run();    
    lock.lock();

    // Perform bookkeeping.
    --request_count_;
  }

  static bool always_ready() { return true; }

private:

  /// @brief List of outstanding request.
  typedef boost::multi_index_container<
    pair_type,
    boost::multi_index::indexed_by<
      boost::multi_index::ordered_non_unique<
        boost::multi_index::member<pair_type,
                                   typename pair_type::first_type,
                                   &pair_type::first>,
        Compare
      >
    >
  > activation_list_type;
  activation_list_type activation_list_;

  /// @brief Thread group managing threads servicing pool.
  boost::thread_group threads_;

  /// @brief io_service used to function as a thread pool.
  boost::asio::io_service io_service_;

  /// @brief Work is used to keep threads servicing io_service.
  boost::asio::io_service::work work_;

  /// @brief Maximum amount of request.
  const std::size_t max_request_;

  /// @brief Count of outstanding request.
  std::size_t request_count_;

  /// @brief Synchronize access to the activation list.
  typedef boost::mutex mutex_type;
  mutex_type mutex_;
};

typedef scheduler<unsigned int, 
                  std::greater<unsigned int> > high_priority_scheduler;

/// @brief adder is a simple proxy that will delegate work to
///        the scheduler.
class adder
{
public:
  adder(high_priority_scheduler& scheduler)
    : scheduler_(scheduler)
  {}

  /// @brief Add a and b with a priority.
  ///
  /// @return Return future result.
  template <typename T>
  boost::unique_future<T> add(
    high_priority_scheduler::priority_type priority,
    const T& a, const T& b)
  {
    // Insert method request
    return scheduler_.insert(
      priority,
      boost::bind(&adder::do_add<T>, a, b));
  }

  /// @brief Add a and b.
  ///
  /// @return Return future result.
  template <typename T>
  boost::unique_future<T> add(const T& a, const T& b)
  {
    return add(high_priority_scheduler::priority_type(), a, b);
  }

private:

  /// @brief Actual add a and b.
  template <typename T>
  static T do_add(const T& a, const T& b)
  {
    std::cout << "Starting addition of '" << a 
              << "' and '" << b << "'" << std::endl;
    // Mimic busy work.
    boost::this_thread::sleep_for(boost::chrono::seconds(2));
    std::cout << "Finished addition" << std::endl;
    return a + b;
  }

private:
  high_priority_scheduler& scheduler_;
};

bool get(bool& value) { return value; }
void guarded_call()
{
  std::cout << "guarded_call" << std::endl; 
}

int main()
{
  const unsigned int max_threads = 1;
  const unsigned int max_request = 4;

  // Sscheduler
  high_priority_scheduler scheduler(max_threads, max_request);

  // Proxy
  adder adder(scheduler);

  // Client

  // Add guarded method to scheduler.
  bool ready = false;
  std::cout << "Add guarded method." << std::endl;
  boost::unique_future<void> future1 = scheduler.insert(
    boost::bind(&get, boost::ref(ready)),
    &guarded_call);

  // Add 1 + 100 with default priority.
  boost::unique_future<int> future2 = adder.add(1, 100);

  // Force sleep to try to get scheduler to run request 2 first.
  boost::this_thread::sleep_for(boost::chrono::seconds(1));

  // Add:
  //   2 + 200 with low priority (5)
  //   "test" + "this" with high priority (99)
  boost::unique_future<int> future3 = adder.add(5, 2, 200);
  boost::unique_future<std::string> future4 = adder.add(99,
    std::string("test"), std::string("this"));

  // Max request should have been reached, so add another.
  boost::unique_future<int> future5 = adder.add(3, 300);

  // Check if request was added.
  std::cout << "future1 is valid: " << future1.valid()
          << "\nfuture2 is valid: " << future2.valid()
          << "\nfuture3 is valid: " << future3.valid()
          << "\nfuture4 is valid: " << future4.valid()
          << "\nfuture5 is valid: " << future5.valid()
          << std::endl;

  // Get results for future2 and future3.  Do nothing with future4's results.
  std::cout << "future2 result: " << future2.get()
          << "\nfuture3 result: " << future3.get()
          << std::endl;

  std::cout << "Unguarding method." << std::endl;
  ready = true;
  future1.wait();
}

执行使用 1 个线程池,最多 4 个请求。

  • request1 被保护到程序结束,并且应该最后运行。
  • request2 (1 + 100) 以默认优先级插入,应该首先运行。
  • request3 (2 + 200) 被插入低优先级,应该在 request4 之后运行。
  • request4 ('test' + 'this') 以高优先级插入,应该在 request3 之前运行。
  • request5 应该由于最大请求而无法插入,并且应该是无效的。

输出如下:

添加受保护的方法。
开始添加“1”和“100”
未来 1 有效:1
未来 2 有效:1
未来 3 有效:1
future4 有效:1
future5 有效:0
完成添加
开始添加 'test' 和 'this'
完成添加
开始添加“2”和“200”
完成添加
未来 2 结果:101
未来 3 结果:202
无防备法。
守卫呼叫
于 2013-05-02T19:21:45.613 回答