如何汇总包含跨多列的不可靠数据的 data.table ?
具体来说,给定
fields <- c("country","language")
dt <- data.table(user=c(rep(3, 5), rep(4, 5)),
behavior=c(rep(FALSE,5),rep(TRUE,5)),
country=c(rep(1,4),rep(2,6)),
language=c(rep(6,6),rep(5,4)),
event=1:10, key=c("user",fields))
dt
# user behavior country language event
# 1: 3 FALSE 1 6 1
# 2: 3 FALSE 1 6 2
# 3: 3 FALSE 1 6 3
# 4: 3 FALSE 1 6 4
# 5: 3 FALSE 2 6 5
# 6: 4 TRUE 2 5 7
# 7: 4 TRUE 2 5 8
# 8: 4 TRUE 2 5 9
# 9: 4 TRUE 2 5 10
# 10: 4 TRUE 2 6 6
我想得到
# user behavior country.name country.support language.name language.support
# 1: 3 FALSE 1 0.8 6 1.0
# 2: 4 TRUE 2 1.0 5 0.8
(这里的x.name
是最常见的xuser
并且x是观察到.support
这个顶部x的共享事件)
无需fields
像这样手动完成:
users <- dt[, sum(behavior) > 0, by=user] # have behavior at least once
setnames(users, "V1", "behavior")
dt.out <- dt[, .N, by=list(user,country)
][, list(country[which.max(N)],max(N)/sum(N)), by=user]
setnames(dt.out, c("V1", "V2"), paste0("country",c(".name", ".support")))
users <- users[dt.out]
dt.out <- dt[, .N, by=list(user,language)
][, list(language[which.max(N)], max(N)/sum(N)), by=user]
setnames(dt.out, c("V1", "V2"), paste0("language",c(".name", ".support")))
users <- users[dt.out]
users
# user behavior country.name country.support language.name language.support
# 1: 3 FALSE 1 0.8 6 1.0
# 2: 4 TRUE 2 1.0 5 0.8
的实际数量fields
是 5,我想避免为每个字段分别重复相同的代码,并且如果我修改fields
. 请注意,这是这个问题的实质,支持计算已在别处向我解释过。
正如在引用的问题中一样,我的数据集大约有 10^7 行,所以我真的需要一个可扩展的解决方案;如果我能避免像 in 那样不必要的复制,那就太好了users <- users[dt.out]
。