我想展示另一种方法来做这种事情,即使我经常觉得这样做并不受欢迎:使用 sql。
sqldf(paste("SELECT a.ID,a.Score"
," , a.Score - (SELECT b.Score"
," FROM df b"
," WHERE b.ID < a.ID"
," ORDER BY b.ID DESC"
," ) diff"
," FROM df a"
)
)
代码看起来很复杂,但实际上并不复杂,它有一些优势,正如您在结果中看到的那样:
ID Score diff
1 1 40 <NA>
2 2 36 -4.0
3 3 32 -4.0
4 4 28 -4.0
5 5 24 -4.0
6 6 20 -4.0
7 7 16 -4.0
8 8 12 -4.0
9 9 8 -4.0
10 10 4 -4.0
一个优点是您使用原始数据框(无需转换为其他类)并获得一个数据框(将其放入 res <- ....)。另一个优点是您仍然拥有所有行。第三个优点是您可以轻松考虑分组因素。例如:
df2 <- data.frame(ID=1:10,grp=rep(c("v","w"), each=5),Score=4*10:1)
sqldf(paste("SELECT a.ID,a.grp,a.Score"
," , a.Score - (SELECT b.Score"
," FROM df2 b"
," WHERE b.ID < a.ID"
," AND a.grp = b.grp"
," ORDER BY b.ID DESC"
," ) diff"
," FROM df2 a"
)
)
ID grp Score diff
1 1 v 40 <NA>
2 2 v 36 -4.0
3 3 v 32 -4.0
4 4 v 28 -4.0
5 5 v 24 -4.0
6 6 w 20 <NA>
7 7 w 16 -4.0
8 8 w 12 -4.0
9 9 w 8 -4.0
10 10 w 4 -4.0