我将如何使用递归来计算用给定数量的骰子滚动某个数字 r 的概率?我试图将其视为一个选择问题,但对于算法应该如何工作仍然很困惑。
例如,它应该是这样的:
P(4,14)=(1/6)P(3,13)+(1/6)P(3,12)+(1/6)P(3,11)+(1/6)P( 3,10)+(1/6)P(3,9)+(1/6)P(3,8)
P(3,8)=(1/6)P(2,7)+(1/6)P(2,6)+(1/6)P(2,5)+(1/6)P( 2,4)+(1/6)P(2,3)+(1/6)P(2,2)
P(2,4)=(1/6)P(1,3)+(1/6)P(1,2)+(1/6)P(1,1)+(1/6)P( 1,0)+(1/6)P(1,-1)+(1/6)P(1,-2)
=(1/6)(1/6)+(1/6)(1/6)+(1/6)(1/6)+(1/6)(0)+(1/6)(0 )+(1/6)(0)
我只是无法将其转换为代码。
static double P(int dice, int r) {
int ret = 1;
for (int i = 2; i < 7; i++) {
ret = (1/6)(ret*(dice-i))/(i+1);
}
return ret;
}
static double RollDice(int dice,int r) {
if (dice==1 && (r<1 || r>6)){
return 0;
}
if (dice==1 && (r>=1 && r<=6)){
return (1.0/6);
}
else {
return ((1.0/6)*P(dice-1,r-1));
}