在这里,我有一个关于 A 星搜索算法的查询。我正在构建所谓的 8 块拼图。这是一个有 9 个位置的游戏(1 个是空的),您必须以正确的顺序排列瓷砖以满足目标位置。
我只需要验证我是否正确编写了算法,这样我就可以在我的代码中寻找问题的其他地方。
我个人认为该算法是正确的,因为它能够解决我创建的第一个预设难题,该难题只需要一次移动即可到达目标位置。但是,它无法解决需要更多动作的谜题。
我试图让它以 3 种不同的方式工作,并且都带来了同样的问题。
尝试1:
while (openList.Count() > 0)
{
PuzzleNode currentNode;
var orderedOpenList = openList.OrderBy(PuzzleNode => PuzzleNode.getPathCost());
currentNode = orderedOpenList.First();
if (compare(currentNode.getPuzzle(), goalArray) == true)
{
//openList.RemoveAt(0); //POLL
break;
// otherwise push currentNode onto closedList & remove from openList
}
else
{
openList.Remove(currentNode);
closedList.Add(currentNode);
}
//generate all the neighbor nodes
generateSuccessors(currentNode, tempList);
for (int i = 0; i < tempList.Count(); i++)
{
PuzzleNode tempNode = tempList[i];
//skip the node if it's in the closed list
if (closedList.Contains(tempNode))
{
continue;
}//end if
//We need to ensure that the G we have seen here is the shortest one
int gScore = currentNode.getG() + 1;
if (!openList.Contains(tempNode) || gScore < tempNode.getG())
{
tempNode.setParentNode(currentNode);
tempNode.setH(tempNode.calcH(currentHueristic, tempNode.getPuzzle(), goalArray));
tempNode.setG(gScore);
tempNode.updatePathCost();
if (!openList.Contains(tempNode))
{
openList.Add(tempNode);
}//end if
}//end if
}//end for
}//end while
尝试2:
while (openList.Count() > 0)
{
PuzzleNode currentNode = GetBestNodeFromOpenList(openList);
openList.Remove(currentNode);
closedList.Add(currentNode);
generateSuccessors(currentNode, tempList);
foreach (PuzzleNode successorNode in tempList)
{
if (compare(successorNode.getPuzzle(), goalArray) == true)
{
//goto thebreak;
return successorNode;
}
successorNode.setG(currentNode.getG() + 1);
successorNode.setH(successorNode.calcH(currentHueristic, successorNode.getPuzzle(), goalArray));
successorNode.updatePathCost();
if (OpenListHasBetterNode(successorNode, openList))
continue;
openList.Add(successorNode);
}
}//end while
private static PuzzleNode GetBestNodeFromOpenList(IEnumerable<PuzzleNode> openList)
{
return openList.OrderBy(n => n.getPathCost()).First();
}
private static bool OpenListHasBetterNode(PuzzleNode successor, IEnumerable<PuzzleNode> list)
{
return list.FirstOrDefault(n => n.getG().Equals(successor.getG())
&& n.getPathCost() < successor.getPathCost()) != null;
}
尝试 2 是我在互联网上找到的算法的更改:解决 8 难题
但是我尽我所能遵循维基百科上的伪代码:
function A*(start,goal)
closedset := the empty set // The set of nodes already evaluated.
openset := {start} // The set of tentative nodes to be evaluated, initially containing the start node
came_from := the empty map // The map of navigated nodes.
g_score[start] := 0 // Cost from start along best known path.
// Estimated total cost from start to goal through y.
f_score[start] := g_score[start] + heuristic_cost_estimate(start, goal)
while openset is not empty
current := the node in openset having the lowest f_score[] value
if current = goal
return reconstruct_path(came_from, goal)
remove current from openset
add current to closedset
for each neighbor in neighbor_nodes(current)
tentative_g_score := g_score[current] + dist_between(current,neighbor)
if neighbor in closedset
if tentative_g_score >= g_score[neighbor]
continue
if neighbor not in openset or tentative_g_score < g_score[neighbor]
came_from[neighbor] := current
g_score[neighbor] := tentative_g_score
f_score[neighbor] := g_score[neighbor] + heuristic_cost_estimate(neighbor, goal)
if neighbor not in openset
add neighbor to openset
我问你是否能找到一个问题,因为我很困惑为什么它只适用于其中一个谜题。这些难题的唯一区别是解决目标状态所需的移动量。
我已经调试了几个小时,但我看不到它,我也看不到我的代码中的其他地方可能有问题。所以我想我只是在问,这对你来说是否正确?
有任何问题一定要问,我会尽可能提供更多信息!先感谢您!