我写了一个算法来解决图中的最小集团数。我已经测试了我的回溯算法,但我无法计算最坏情况的时间复杂度,我尝试了很多次。
我知道这个问题是一个 NP 难题,但我认为是否有可能根据代码给出最差的时间复杂度。这段代码最差的时间复杂度是多少?任何想法?你如何形式化递归方程?
我试图编写可理解的代码。如果您有任何问题,请写评论。我会很高兴获得提示、参考和答案。谢谢提醒伙计:)。
编辑 正如 MC 评论的那样,我基本上已经尝试解决这个问题Clique 封面问题
伪代码:
function countCliques(graph, vertice, cliques, numberOfClique, minimumSolution)
for i = 1 .. number of cliques + 1 new loop
if i > minimumSolution then
return;
end if
if (fitToClique(cliques(i), vertice, graph) then
addVerticeToClique(cliques(i), vertice);
if (vertice == 0) then //last vertice
minimumSolution = numberOfClique
printResult(result);
else
if (i == number of cliques + 1) then // if we are using a new clique the +1 always a new clique
countCliques(graph, vertice - 1, cliques, number of cliques + 1, minimum)
else
countCliques(graph, vertice - 1, cliques, number of cliques, minimum)
end if
end if
deleteVerticeFromClique(cliques(i), vertice);
end if
end loop
end function
bool fitToClique(clique, vertice, graph)
for ( i = 1 .. cliqueSize) loop
verticeFromClique = clique(i)
if (not connected(verticeFromClique, vertice)) then
return false
end if
end loop
return true
end function
代码
int countCliques(int** graph, int currentVertice, int** result, int numberOfSubset, int& minimum) {
// if solution
if (currentVertice == -1) {
// if a better solution
if (minimum > numberOfSubset) {
minimum = numberOfSubset;
printf("New minimum result:\n");
print(result, numberOfSubset);
}
c++;
} else {
// if not a solution, try to insert to a clique, if not fit then create a new clique (+1 in the loop)
for (int i = 0; i < numberOfSubset + 1; i++) {
if (i > minimum) {
break;
}
//if fit
if (fitToSubset(result[i], currentVertice, graph)) {
// insert
result[i][0]++;
result[i][result[i][0]] = currentVertice;
// try to insert the next vertice
countCliques(graph, currentVertice - 1, result, (i == numberOfSubset) ? (i + 1) : numberOfSubset, minimum);
// delete vertice from the clique
result[i][0]--;
}
}
}
return c;
}
bool fitToSubset(int *subSet, int currentVertice, int **graph) {
int subsetLength = subSet[0];
for (int i = 1; i < subsetLength + 1; i++) {
if (graph[subSet[i]][currentVertice] != 1) {
return false;
}
}
return true;
}
void print(int **result, int n) {
for (int i = 0; i < n; i++) {
int m = result[i][0];
printf("[");
for (int j = 1; j < m; j++) {
printf("%d, ",result[i][j] + 1);
}
printf("%d]\n", result[i][m] + 1);
}
}
int** readFile(const char* file, int& v, int& e) {
int from, to;
int **graph;
FILE *graphFile;
fopen_s(&graphFile, file, "r");
fscanf_s(graphFile,"%d %d", &v, &e);
graph = (int**)malloc(v * sizeof(int));
for (int i = 0; i < v; i ++) {
graph[i] = (int*)calloc(v, sizeof(int));
}
while(fscanf_s(graphFile,"%d %d", &from, &to) == 2) {
graph[from - 1][to - 1] = 1;
graph[to - 1][from - 1] = 1;
}
fclose(graphFile);
return graph;
}