1

我正在尝试让 CUDA 代码在 Ubuntu 12.04 上与 Qt 一起使用

我的 cuda_interface.cu

// CUDA-C includes
#include <cuda.h>


extern "C"
void runCudaPart();

// Main cuda function

void runCudaPart() {

// all your cuda code here *smile*

}

我的 main.cpp #include

extern "C"
void runCudaPart();

int main(int argc, char *argv[])
{
    runCudaPart();
}

我的简历

#-------------------------------------------------
#
# Project created by QtCreator 2013-04-17T10:50:37
#
#-------------------------------------------------

QT       += core

QT       -= gui

TARGET = QtCuda
CONFIG   += console
CONFIG   -= app_bundle

TEMPLATE = app


SOURCES += main.cpp


# This makes the .cu files appear in your project
OTHER_FILES +=  ./cuda_interface.cu

# CUDA settings <-- may change depending on your system
CUDA_SOURCES += ./cuda_interface.cu
CUDA_SDK = "/usr/local/cuda-5.0/"   # Path to cuda SDK install
CUDA_DIR = "/usr/local/cuda-5.0/"            # Path to cuda toolkit install
SYSTEM_NAME = unix         # Depending on your system either 'Win32', 'x64', or 'Win64'
SYSTEM_TYPE = 32            # '32' or '64', depending on your system
CUDA_ARCH = sm_21           # Type of CUDA architecture, for example 'compute_10', 'compute_11', 'sm_10'
NVCC_OPTIONS = --use_fast_math


# include paths
INCLUDEPATH += $$CUDA_DIR/include

# library directories
QMAKE_LIBDIR += $$CUDA_DIR/lib/

CUDA_OBJECTS_DIR = ./


# The following library conflicts with something in Cuda
#QMAKE_LFLAGS_RELEASE = /NODEFAULTLIB:msvcrt.lib
#QMAKE_LFLAGS_DEBUG   = /NODEFAULTLIB:msvcrtd.lib

# Add the necessary libraries
CUDA_LIBS = libcuda libcudart
# The following makes sure all path names (which often include spaces) are put between quotation marks
CUDA_INC = $$join(INCLUDEPATH,'" -I"','-I"','"')
NVCC_LIBS = $$join(CUDA_LIBS,' -l','-l', '')
LIBS += $$join(CUDA_LIBS,'.so ', '', '.so')

# Configuration of the Cuda compiler
CONFIG(debug, debug|release) {
    # Debug mode
    cuda_d.input = CUDA_SOURCES
    cuda_d.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
    cuda_d.commands = $$CUDA_DIR/bin/nvcc -D_DEBUG $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
    cuda_d.dependency_type = TYPE_C
    QMAKE_EXTRA_COMPILERS += cuda_d
}
else {
    # Release mode
    cuda.input = CUDA_SOURCES
    cuda.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
    cuda.commands = $$CUDA_DIR/bin/nvcc $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
    cuda.dependency_type = TYPE_C
    QMAKE_EXTRA_COMPILERS += cuda
}

我正在尝试从Compiling Cuda code in Qt Creator on Windows中采用这个 .pro 文件, 这是一个类似的问题,但正在寻求 Windows 的解决方案。

目前编译器显示以下错误:

make: Entering directory `/home/swaroop/Work/ai-junkies/cuda/uc_davis/opencv2.x/QtCuda'
g++ -Wl,-O1 -o QtCuda cuda_interface_cuda.o main.o    -L/usr/local/cuda-5.0//lib/ -L/usr/lib/i386-linux-gnu libcuda.so libcudart.so -lQtCore -lpthread 
g++: error: libcuda.so: No such file or directory
g++: error: libcudart.so: No such file or directory
make: *** [QtCuda] Error 1

请帮我解决这些问题。

4

3 回答 3

9

我终于可以在 Ubuntu 12.04 上使用 Qt Creator 运行 CUDA 代码了。我假设您可以在系统上独立运行 cuda。这是在 ubuntu 12.04 上设置 cuda 的绝佳指南 http://sn0v.wordpress.com/2012/05/11/installing-cuda-on-ubuntu-12-04/

我从 Qt-Creator 开始了一个 Qt 控制台应用程序。这是我的 main.cpp

#include <QtCore/QCoreApplication>

extern "C"
void runCudaPart();

int main(int argc, char *argv[])
{
    runCudaPart();
}

这是 cuda_interface.cu

// CUDA-C includes
#include <cuda.h>

#include <cuda_runtime.h>

    #include <stdio.h>

    extern "C"
//Adds two arrays
    void runCudaPart();


    __global__ void addAry( int * ary1, int * ary2 )
    {
    int indx = threadIdx.x;
    ary1[ indx ] += ary2[ indx ];
}


// Main cuda function

void runCudaPart() {

    int ary1[32];
    int ary2[32];
    int res[32];

    for( int i=0 ; i<32 ; i++ )
    {
        ary1[i] = i;
        ary2[i] = 2*i;
        res[i]=0;
    }

    int * d_ary1, *d_ary2;
    cudaMalloc((void**)&d_ary1, 32*sizeof(int));
    cudaMalloc((void**)&d_ary2, 32*sizeof(int));


    cudaMemcpy((void*)d_ary1, (void*)ary1, 32*sizeof(int), cudaMemcpyHostToDevice);
    cudaMemcpy((void*)d_ary2, (void*)ary2, 32*sizeof(int), cudaMemcpyHostToDevice);


    addAry<<<1,32>>>(d_ary1,d_ary2);

    cudaMemcpy((void*)res, (void*)d_ary1, 32*sizeof(int), cudaMemcpyDeviceToHost);
    for( int i=0 ; i<32 ; i++ )
        printf( "result[%d] = %d\n", i, res[i]);


    cudaFree(d_ary1);
    cudaFree(d_ary2);
}

这是我的 .pro 文件。

#-------------------------------------------------
#
# Project created by QtCreator 2013-04-17T16:30:33
#
#-------------------------------------------------

QT       += core

QT       -= gui

TARGET = QtCuda
CONFIG   += console
CONFIG   -= app_bundle

TEMPLATE = app


SOURCES += main.cpp


# This makes the .cu files appear in your project
OTHER_FILES +=  ./cuda_interface.cu

# CUDA settings <-- may change depending on your system
CUDA_SOURCES += ./cuda_interface.cu
CUDA_SDK = "/usr/local/cuda-5.0/"   # Path to cuda SDK install
CUDA_DIR = "/usr/local/cuda-5.0/"            # Path to cuda toolkit install

# DO NOT EDIT BEYOND THIS UNLESS YOU KNOW WHAT YOU ARE DOING....

SYSTEM_NAME = unix         # Depending on your system either 'Win32', 'x64', or 'Win64'
SYSTEM_TYPE = 32            # '32' or '64', depending on your system
CUDA_ARCH = sm_21           # Type of CUDA architecture, for example 'compute_10', 'compute_11', 'sm_10'
NVCC_OPTIONS = --use_fast_math


# include paths
INCLUDEPATH += $$CUDA_DIR/include

# library directories
QMAKE_LIBDIR += $$CUDA_DIR/lib/

CUDA_OBJECTS_DIR = ./


# Add the necessary libraries
CUDA_LIBS = -lcuda -lcudart

# The following makes sure all path names (which often include spaces) are put between quotation marks
CUDA_INC = $$join(INCLUDEPATH,'" -I"','-I"','"')
#LIBS += $$join(CUDA_LIBS,'.so ', '', '.so')
LIBS += $$CUDA_LIBS

# Configuration of the Cuda compiler
CONFIG(debug, debug|release) {
    # Debug mode
    cuda_d.input = CUDA_SOURCES
    cuda_d.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
    cuda_d.commands = $$CUDA_DIR/bin/nvcc -D_DEBUG $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
    cuda_d.dependency_type = TYPE_C
    QMAKE_EXTRA_COMPILERS += cuda_d
}
else {
    # Release mode
    cuda.input = CUDA_SOURCES
    cuda.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
    cuda.commands = $$CUDA_DIR/bin/nvcc $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
    cuda.dependency_type = TYPE_C
    QMAKE_EXTRA_COMPILERS += cuda
}
于 2013-04-17T11:37:58.950 回答
2

libcuda.so并且在通话libcudart.so中错过了-l他们面前的旗帜。g++您有一个适当的连接命令来为 添加它们NVCC,因此对 使用相同的逻辑g++

CUDA_LIBS = $$join(CUDA_LIBS,' -l','-l', '') 
LIBS += $$join(CUDA_LIBS,'.so ', '', '.so')

或者只是更改为:

CUDA_LIBS = -llibcuda -llibcudart

并摆脱NVCC_LIBS变量。

于 2013-04-17T08:12:03.783 回答
0

我无法对 mkuse 的回答发表评论,但我想补充一点……

我不得不将 -L/usr/local/cuda-6.5/lib64 添加到 CUDA_LIBS:

# Add the necessary libraries
CUDA_LIBS = -lcuda -lcudart -L/usr/local/cuda-6.5/lib64

否则,即使我可以独立运行 cuda,我也会收到错误“找不到 -lcudart”。以防万一。

编辑:我意识到这不是必需的,我只需要检查 QMAKE_LIBDIR 的路径,因为我有一个 64 位系统。

于 2015-01-07T00:46:24.770 回答