我不确定为什么这些天教师们对哨兵节点感到高兴,但它们不是必需的。该值NULL
与其他任何值一样好。考虑这样的实现,我强烈建议您花大量时间盯着、研究,如果可能的话,使用调试器单步执行:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
typedef int Data_Item;
typedef struct BST_Node
{
int key;
Data_Item data;
struct BST_Node *left, *right;
} BST_Node;
typedef enum
{
BST_TRAVERSE_PREORDER,
BST_TRAVERSE_INORDER,
BST_TRAVERSE_POSTORDER
} BST_TRAVERSE_TYPE;
// allocate a new BST node and copy in the passed data
BST_Node *BST_newnode(int key, Data_Item data)
{
BST_Node *p = malloc(sizeof(*p));
p->left = p->right = NULL;
p->key = key;
p->data = data;
return p;
}
// insert. recurses until we reach a null node, then performs
// the insertion at that node pointer. initial invoke is done
// using the address of the root of our tree.
//
// note: this implementation does NOT allow duplicates
void BST_insert(struct BST_Node** p, int key, Data_Item data)
{
if (*p == NULL)
{
*p = BST_newnode(key, data);
}
else if (key < (*p)->key)
{
BST_insert(&(*p)->left, key, data);
}
else if ((*p)->key < key)
{
BST_insert(&(*p)->right, key, data);
}
}
// traverses based on traversal selection type
void BST_traverse(BST_Node* p, BST_TRAVERSE_TYPE tt,
void (*pfn)(int, Data_Item* data))
{
if (!p)
return;
switch (tt)
{
case BST_TRAVERSE_PREORDER:
pfn(p->key, &p->data);
BST_traverse(p->left, tt, pfn);
BST_traverse(p->right,tt, pfn);
break;
case BST_TRAVERSE_INORDER:
BST_traverse(p->left, tt, pfn);
pfn(p->key, &p->data);
BST_traverse(p->right,tt, pfn);
break;
case BST_TRAVERSE_POSTORDER:
BST_traverse(p->left, tt, pfn);
BST_traverse(p->right,tt, pfn);
pfn(p->key, &p->data);
break;
}
}
// deletes a node AND all its children
void BST_delete_all(BST_Node** p)
{
// do nothing on a null pointer
if (!*p)
return;
BST_delete_all(&(*p)->left);
BST_delete_all(&(*p)->right);
free(*p);
*p = NULL;
}
// my print function
void print_data(int key, Data_Item* pData)
{
printf("Key %.2d ==> %d\n", key, *pData);
}
int main(int argc, char *argv[])
{
srand((unsigned)time(0));
BST_Node* root = NULL;
for (int i=0;i<16;++i)
BST_insert(&root, rand()%50, i);
printf("Preorder Traversal\n");
printf("=================\n");
BST_traverse(root, BST_TRAVERSE_PREORDER, &print_data);
printf("\nInorder Traversal\n");
printf("=================\n");
BST_traverse(root, BST_TRAVERSE_INORDER, &print_data);
printf("\nPostorder Traversal\n");
printf("=================\n");
BST_traverse(root, BST_TRAVERSE_POSTORDER, &print_data);
// delete the tree
BST_delete_all(&root);
return EXIT_SUCCESS;
};
样本输出
Preorder Traversal
=================
Key 30 ==> 0
Key 07 ==> 2
Key 05 ==> 4
Key 04 ==> 5
Key 03 ==> 8
Key 24 ==> 3
Key 17 ==> 7
Key 10 ==> 14
Key 16 ==> 15
Key 19 ==> 9
Key 29 ==> 12
Key 43 ==> 1
Key 40 ==> 10
Key 39 ==> 11
Inorder Traversal
=================
Key 03 ==> 8
Key 04 ==> 5
Key 05 ==> 4
Key 07 ==> 2
Key 10 ==> 14
Key 16 ==> 15
Key 17 ==> 7
Key 19 ==> 9
Key 24 ==> 3
Key 29 ==> 12
Key 30 ==> 0
Key 39 ==> 11
Key 40 ==> 10
Key 43 ==> 1
Postorder Traversal
=================
Key 03 ==> 8
Key 04 ==> 5
Key 05 ==> 4
Key 16 ==> 15
Key 10 ==> 14
Key 19 ==> 9
Key 17 ==> 7
Key 29 ==> 12
Key 24 ==> 3
Key 07 ==> 2
Key 39 ==> 11
Key 40 ==> 10
Key 43 ==> 1
Key 30 ==> 0