在 R 中,我编写了一个包含两个递归计算的对数似然函数。对数似然函数正常工作(它给出了已知参数值的答案),但是当我尝试使用 最大化它时optim()
,它需要太多时间。如何优化代码?提前感谢您的想法。
这是具有使用 copula 函数的依赖结构的马尔可夫状态切换模型的对数似然函数。
g
在 for 循环中命名:
p
在 for 循环中命名:
f
在代码中命名:
一些数据:
u <- cbind(rt(100,10),rt(100,13))
f
功能:
f=function(u,p,e1,e2){
s=diag(2);s[1,2]=p
ff=dcopula.gauss(cbind(pt(u[,1],e1),pt(u[,2],e2)),Sigma=s)*dt(u[,1],e1)*dt(u[,2],e2)
return(ff)
}
对数似然函数:
loglik=function(x){
p11<-x[1];p12<-x[2];p21<-x[3];p22<-x[4];p31<-x[5];p32<-x[6];r<-x[7];a1<-x[8];a2<-x[9];s<-x[10];b1<-x[11];b2<-x[12];t<-x[13];c1<-x[14];c2<-x[15]
p1=c(numeric(nrow(u)));p2=c(numeric(nrow(u)));p3=c(numeric(nrow(u)))
g=c(numeric(nrow(u)))
p1_0=.3
p2_0=.3
g[1]<-(p1_0*f(u,r,a1,a2)[1])+(p2_0*f(u,s,b1,b2)[1])+((1-(p1_0+p2_0))*f(u,t,c1,c2)[1])
p1[1]<-((p1_0*p11*f(u,r,a1,a2)[1])+(p2_0*p21*f(u,r,a1,a2)[1])+((1-(p1_0+p2_0))*p31*f(u,r,a1,a2)[1]))/g[1]
p2[1]<-((p1_0*p12*f(u,s,b1,b2)[1])+(p2_0*p22*f(u,s,b1,b2)[1])+((1-(p1_0+p2_0))*p32*f(u,s,b1,b2)[1]))/g[1]
p3[1]<-((p1_0*(1-(p11+p12))*f(u,t,c1,c2)[1])+(p2_0*(1-(p21+p22))*f(u,t,c1,c2)[1])+((1-(p1_0+p2_0))*(1-(p31+p32))*f(u,t,c1,c2)[1]))/g[1]
for(i in 2:nrow(u)){
g[i]<-(p1[i-1]*p11*f(u,r,a1,a2)[i])+(p1[i-1]*p12*f(u,s,b1,b2)[i])+(p1[i-1]*(1-(p11+p12))*f(u,t,c1,c2)[i])+
(p2[i-1]*p21*f(u,r,a1,a2)[i])+(p2[i-1]*p22*f(u,s,b1,b2)[i])+(p2[i-1]*(1-(p21+p22))*f(u,t,c1,c2)[i])+
(p3[i-1]*p31*f(u,r,a1,a2)[i])+(p3[i-1]*p32*f(u,s,b1,b2)[i])+(p3[i-1]*(1-(p31+p32))*f(u,t,c1,c2)[i])
p1[i]<-((p1[i-1]*p11*f(u,r,a1,a2)[i])+(p1[i-1]*p12*f(u,s,b1,b2)[i])+(p1[i-1]*(1-(p11+p12))*f(u,t,c1,c2)[i]))/g[i]
p2[i]<-((p2[i-1]*p21*f(u,r,a1,a2)[i])+(p2[i-1]*p22*f(u,s,b1,b2)[i])+(p2[i-1]*(1-(p21+p22))*f(u,t,c1,c2)[i]))/g[i]
p3[i]<-((p3[i-1]*p31*f(u,r,a1,a2)[i])+(p3[i-1]*p32*f(u,s,b1,b2)[i])+(p3[i-1]*(1-(p31+p32))*f(u,t,c1,c2)[i]))/g[i]
}
return(-sum(log(g)))
}
优化:
library(QRM)
library(copula)
start=list(0,1,0,0,0,0,1,9,7,-1,10,13,1,6,4)
##
optim(start,loglik,lower=c(rep(0,6),-1,1,1,-1,1,1,-1,1,1),
upper=c(rep(1,6),1,Inf,Inf,1,Inf,Inf,1,Inf,Inf),
method="L-BFGS-B") -> fit