我是 OCaml 新手。我在 OCaml 中编写了一个简单的程序来生成公平和平方数(一个回文数和另一个回文数的平方,更多细节在这里:https ://code.google.com/codejam/contest/2270488/dashboard# s=p2 ) 如下:
更新 1:优化算法(在我的笔记本电脑上大约需要 20 秒):
open Printf;;
let rec _is_palindrome s i j =
i >= j ||
(s.[i] = s.[j] &&
_is_palindrome s (i + 1) (j - 1))
;;
let is_palindrome s =
let sl = String.length s in
sl > 0 && (_is_palindrome s 0 (sl - 1))
;;
let rec del_zeros s =
let sl = String.length s in
if (sl < 1) then
s
else
(if s.[0] = '0' then
del_zeros (String.sub s 1 (sl - 1))
else
s
)
;;
let c2i c =
Char.code c - Char.code '0'
;;
let i2c i =
Char.chr (i + Char.code '0')
;;
(* only for finding fair and square numbers *)
let square s =
let slen = String.length s in
if slen < 1 then
""
else
let reslen = 2 * slen in
let t = ref 0 in
t := 0;
(* fast check *)
(let i = reslen/2 in
for j = (slen - 1) downto 0 do
if (i - 1 - j) >= 0 && (i - 1 - j) < slen then
t := !t + (c2i s.[j]) * (c2i s.[i - 1 - j]);
done;
if !t > 9 then
(* jump out *)
raise (Invalid_argument "carry");
);
(let res = String.make reslen '0' in
(* do the square cal now *)
for i = (reslen - 1) downto 1 do
t := 0;
for j = (slen - 1) downto 0 do
if (i - 1 - j) >= 0 && (i - 1 - j) < slen then
t := !t + (c2i s.[j]) * (c2i s.[i - 1 - j]);
done;
if !t > 9 then
(* jump out *)
raise (Invalid_argument "carry");
res.[i] <- i2c !t;
done;
del_zeros res
);
;;
let rec check_fs fsns p =
try let sq = square p in
if (is_palindrome sq) then
sq :: fsns
else
fsns
with Invalid_argument "carry" ->
fsns
;;
(* build the fair and square number list *)
(* dfs *)
let rec create_fair_square_nums fsns p sum max_num_digs =
let l = String.length p in
if l > max_num_digs || sum > 9 then
fsns
else
let fsns = create_fair_square_nums fsns ("0" ^ p ^ "0") sum max_num_digs in
let fsns = create_fair_square_nums fsns ("1" ^ p ^ "1") (sum + 1) max_num_digs in
let fsns = create_fair_square_nums fsns ("2" ^ p ^ "2") (sum + 4) max_num_digs in
let fsns = create_fair_square_nums fsns ("3" ^ p ^ "3") (sum + 9) max_num_digs in
let fsns = check_fs fsns p in
fsns
;;
let rec print_fsns fsns =
List.iter (fun s -> printf "%s " s) fsns;
printf "\n"
;;
let num_str_cmp s1 s2 =
let len1 = String.length s1 in
let len2 = String.length s2 in
match (len1 - len2) with
| 0 ->
String.compare s1 s2
| cmp -> cmp
;;
(* works *)
let max_dig = 51;;
let fsns =
let fsns = create_fair_square_nums [] "" 0 max_dig in
let fsns = create_fair_square_nums fsns "0" 0 max_dig in
let fsns = create_fair_square_nums fsns "1" 1 max_dig in
let fsns = create_fair_square_nums fsns "2" 4 max_dig in
create_fair_square_nums fsns "3" 9 max_dig
;;
let fsns = List.sort num_str_cmp fsns;;
print_fsns fsns;;
我的原始代码(天真的解决方案,太慢了):
open Printf;;
let rec _is_palindrome s i j =
if i < j then
if s.[i] = s.[j] then
_is_palindrome s (i + 1) (j - 1)
else
false
else
true
;;
let is_palindrome s =
if (String.length s < 1) then
false
else
_is_palindrome s 0 ((String.length s) - 1)
;;
let rec del_zeros s =
let sl = String.length s in
if (sl < 1) then
s
else
(if s.[0] = '0' then
del_zeros (String.sub s 1 (sl - 1))
else
s
)
;;
let c2i c =
Char.code c - Char.code '0'
;;
let i2c i =
Char.chr (i + Char.code '0')
;;
(* only positive number *)
let square s =
(* including the carry dig *)
let slen = String.length s in
let res = (
if slen > 0 then
let reslen = 2 * slen in
let res = String.make reslen '0' in
let t = ref 0 in
for i = (reslen - 1) downto 1 do
t := c2i (res.[i]);
for j = (slen - 1) downto 0 do
if (i - 1 - j) >= 0 && (i - 1 - j) < slen then
(t := !t + (c2i s.[j]) * (c2i s.[i - 1 - j]);
(* printf "%d, %d: %d\n" j (i - 1 - j) !t; *) )
done;
(* printf "%d: %d\n" i !t; *)
if !t > 9 then
(res.[i - 1] <-
Char.chr (Char.code res.[i - 1] + (!t / 10));
t := !t mod 10
);
res.[i] <- i2c !t;
done;
res;
else
""
) in
(* printf "square %s -> %s\n" s res; *)
del_zeros res
;;
let extend_palindrome new_ps n =
("0" ^ n ^ "0") ::
("1" ^ n ^ "1") ::
("2" ^ n ^ "2") ::
("3" ^ n ^ "3") ::
new_ps
;;
let rec extend_palindromes new_ps ps =
match ps with
| [] -> new_ps
| h :: t ->
let new_ps = extend_palindrome new_ps h in
extend_palindromes new_ps t
;;
let rec check_fs fsns ps =
match ps with
| [] -> fsns
| h :: t ->
let sq = square h in
if (is_palindrome sq) then
check_fs (sq :: fsns) t
else
check_fs fsns t
;;
(* build the fair and square number list *)
let rec create_fair_square_nums fsns ps max_num_digs =
match ps with
| h :: t ->
if String.length h > max_num_digs then
fsns
else
let ps = extend_palindromes [] ps in
let fsns = check_fs fsns ps in
create_fair_square_nums fsns ps max_num_digs
| [] ->
raise (Invalid_argument "fsn should not be []")
;;
let rec print_fsns fsns =
List.iter (fun s -> printf "%s " s) fsns;
printf "\n"
;;
let num_str_cmp s1 s2 =
let len1 = String.length s1 in
let len2 = String.length s2 in
match (len1 - len2) with
| 0 ->
String.compare s1 s2
| cmp -> cmp
;;
(* works *)
let max_dig = 50;;
let fsns =
let fsns0 = create_fair_square_nums [] [""] max_dig in
let fsns1 = create_fair_square_nums [] ["0"; "1"; "2"; "3"] max_dig in
(* print_fsns fsns0;
print_fsns fsns1; *)
["0"; "1"; "4"; "9"] @ fsns0 @ fsns1
;;
(* print_fsns fsns;; *)
let fsns = List.sort num_str_cmp fsns;;
print_fsns fsns;;
此代码生成 10^100 以内的公平和平方数。
此代码在性能方面应该存在一些(或许多)问题。在我杀死它之前,它运行了 30 多分钟。当 max_dig = 14 时,它会很快完成(< 1 分钟)。
欢迎任何关于改进此代码的建议或批评。