0

我正在比较穆迪和标准普尔的信用评级决定因素的权重。进行 bioprobit 分析的目的是测试穆迪和标准普尔之间的贝塔系数是否相同。我想根据 Wald 测试执行此操作,但我需要 Beta 的协方差矩阵。你能帮我看看Stata如何获得协方差矩阵的代码吗?

进入模型的变量是 S&Prat Mrat GDP Inflation Ratio 等

提前致谢

4

1 回答 1

2

基于@Nick Cox:

示例来自Stata data(您需要安装bioprobit用户编写的命令)

sysuse auto 
bioprobit headroom foreign price length mpg turn


. bioprobit headroom foreign price length mpg turn

group(forei |
        gn) |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |         52       70.27       70.27
          2 |         22       29.73      100.00
------------+-----------------------------------
      Total |         74      100.00

initial:       log likelihood =  -148.5818
rescale:       log likelihood =  -148.5818
rescale eq:    log likelihood = -147.44136
Iteration 0:   log likelihood = -147.44136  
Iteration 1:   log likelihood = -147.43958  
Iteration 2:   log likelihood = -147.43958  

Bivariate ordered probit regression               Number of obs   =         74
                                                  Wald chi2(4)    =      22.61
Log likelihood = -147.43958                       Prob > chi2     =     0.0002

------------------------------------------------------------------------------
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
headroom     |
       price |  -.0000664   .0000478    -1.39   0.164      -.00016    .0000272
      length |   .0347597    .013096     2.65   0.008      .009092    .0604274
         mpg |  -.0118916   .0354387    -0.34   0.737    -.0813502    .0575669
        turn |  -.0333833   .0554614    -0.60   0.547    -.1420857    .0753191
-------------+----------------------------------------------------------------
foreign      |
       price |   .0003981   .0001485     2.68   0.007     .0001071    .0006892
      length |  -.0585548   .0284639    -2.06   0.040     -.114343   -.0027666
         mpg |  -.0306867   .0543826    -0.56   0.573    -.1372745    .0759012
        turn |  -.3471526   .1321667    -2.63   0.009    -.6061946   -.0881106
-------------+----------------------------------------------------------------
athrho       |
       _cons |    .053797   .3131717     0.17   0.864    -.5600082    .6676022
-------------+----------------------------------------------------------------
      /cut11 |    2.72507   2.451108                     -2.079014    7.529154
      /cut12 |   3.640296   2.445186                     -1.152181    8.432772
      /cut13 |   4.227321   2.443236                      -.561334    9.015975
      /cut14 |   4.792874   2.452694                     -.0143182    9.600067
      /cut15 |   5.586825   2.480339                      .7254488     10.4482
      /cut16 |   6.381491   2.505192                      1.471404    11.29158
      /cut17 |   7.145783   2.529663                      2.187735    12.10383
      /cut21 |  -21.05768    6.50279                     -33.80292   -8.312449
-------------+----------------------------------------------------------------
         rho |   .0537452   .3122671                     -.5079835    .5834004
------------------------------------------------------------------------------
LR test of indep. eqns. :            chi2(1) =     0.03   Prob > chi2 = 0.8636


# results that are in `Stata's memory` 




ereturn list

scalars:
                 e(rc) =  0
                 e(ll) =  -147.4395814769408
          e(converged) =  1
               e(rank) =  17
                  e(k) =  17
               e(k_eq) =  11
               e(k_dv) =  2
                 e(ic) =  2
                  e(N) =  74
         e(k_eq_model) =  1
               e(df_m) =  4
               e(chi2) =  22.60944901065799
                  e(p) =  .0001515278365065
               e(ll_0) =  -147.4543291018424
              e(k_aux) =  8
             e(chi2_c) =  .0294952498030625
                e(p_c) =  .8636405133599019

macros:
            e(chi2_ct) : "LR"
             e(depvar) : "headroom foreign"
            e(predict) : "bioprobit_p"
                e(cmd) : "bioprobit"
           e(chi2type) : "Wald"
                e(vce) : "oim"
                e(opt) : "ml"
              e(title) : "Bivariate ordered probit regression"
          e(ml_method) : "d2"
               e(user) : "bioprobit_d2"
           e(crittype) : "log likelihood"
          e(technique) : "nr"
         e(properties) : "b V"

matrices:
                  e(b) :  1 x 17
                  e(V) :  17 x 17
           e(gradient) :  1 x 17
               e(ilog) :  1 x 20

functions:
             e(sample)   

#You need to use mat list e(V) to display the variance covariance matrix

mat list e(V)

symmetric e(V)[17,17]
                   headroom:   headroom:   headroom:   headroom:    foreign:    foreign:    foreign:    foreign:
                      price      length         mpg        turn       price      length         mpg        turn
 headroom:price   2.280e-09
headroom:length  -1.431e-07   .00017151
   headroom:mpg   3.991e-07   .00018914    .0012559
  headroom:turn   4.426e-07  -.00050302   .00027186   .00307597
  foreign:price   1.124e-10  -4.999e-09   2.093e-08   2.079e-08   2.205e-08
 foreign:length  -5.846e-09   8.021e-06   9.950e-06   -.0000249  -2.087e-06   .00081019
    foreign:mpg   1.712e-08   .00001035   .00006387   .00001352   1.254e-06    .0006546   .00295746
   foreign:turn   1.145e-08  -.00002418   .00001022   .00015562  -.00001083  -.00028103   -.0001411   .01746805
   athrho:_cons   2.360e-07  -.00004531    .0000684   .00005575  -2.010e-06   .00043717  -.00147713  -.00449239
    cut11:_cons    .0000134   .01507955   .07578798   .03653671   1.039e-06   .00068972   .00401168   .00211706
    cut12:_cons   .00001374   .01514192   .07570527   .03630636   9.488e-07    .0007133   .00386727   .00165474
    cut13:_cons   .00001393   .01520261   .07550433   .03603257   9.668e-07    .0007088   .00386171   .00165557
    cut14:_cons   .00001363   .01539981   .07532214   .03582323   1.042e-06   .00068687   .00392914   .00189195
    cut15:_cons   .00001264   .01584186   .07541396   .03541453   1.101e-06   .00068091    .0040106   .00209853
    cut16:_cons   .00001148   .01611862   .07562328   .03535426   1.052e-06   .00069849   .00401805   .00206701
    cut17:_cons   .00001055   .01602514   .07547739   .03620485   9.866e-07   .00069868   .00399718   .00207143
    cut21:_cons   4.412e-07   .00073781   .00377201   .00190456  -.00058242   .13231539   .18778679   .51179829

                     athrho:      cut11:      cut12:      cut13:      cut14:      cut15:      cut16:      cut17:
                      _cons       _cons       _cons       _cons       _cons       _cons       _cons       _cons
   athrho:_cons   .09807649
    cut11:_cons   -.0064343   6.0079319
    cut12:_cons   .00229188   5.9652808   5.9789347
    cut13:_cons   .00187855   5.9546524   5.9639617   5.9694026
    cut14:_cons  -.00310632   5.9724552   5.9793328   5.9820512   6.0157096
    cut15:_cons  -.00783593   6.0300908     6.03522   6.0360956   6.0667389   6.1520838
    cut16:_cons  -.00756313   6.0745198   6.0789515   6.0788816   6.1081885   6.1880183    6.275988
    cut17:_cons  -.00673882   6.0811477   6.0851101   6.0844209   6.1128719   6.1897756   6.2679698   6.3991936
    cut21:_cons  -.13478036   .30582954   .28918756   .28844026   .29527602   .30401845   .30575462   .30503648

                      cut21:
                      _cons
    cut21:_cons   42.286275

# If you want to use variance covariance matrix of first four variables

mat kk=e(V)
mat kkk=kk[1..4,1..4]
mat list kkk

symmetric kkk[4,4]
                   headroom:   headroom:   headroom:   headroom:
                      price      length         mpg        turn
 headroom:price   2.280e-09
headroom:length  -1.431e-07   .00017151
   headroom:mpg   3.991e-07   .00018914    .0012559
  headroom:turn   4.426e-07  -.00050302   .00027186   .00307597
于 2013-04-15T12:45:27.880 回答