遵循 Shambool 建议的方法,这就是我想出的。我使用了 Ramer-Douglas-Peucker 算法来简化感兴趣区域的轮廓,并确定了两个转折点。我打算使用两个转折点来获得我的三个未知数(xoffset、yoffset 和旋转角度),但是第二个转折点向右有点太远了,因为 RDP 简化了该区域中更平滑的曲线。因此,我使用了通往第一个转折点的线段的角度。在 image1 和 image2 之间区分这个角度给了我旋转角度。我仍然对这个解决方案并不完全满意。它对这两个图像运行良好,但我不确定它是否能在整个图像序列上运行良好。走着瞧。
将轮廓拟合到黑色边框的已知形状确实会更好。
# select region of interest from largest contour
ind1=where((x1>190.) & (y1>200.) & (y1<900.))[0]
ind2=where((x2>190.) & (y2>200.) & (y2<900.))[0]
figure(figsize=(10,10))
imshow(gray1,cmap=cm.gray, alpha=0.5);plot(x1[ind1],y1[ind1],'b-')
imshow(gray2,cmap=cm.gray, alpha=0.5);plot(x2[ind2],y2[ind2],'g-')
axis([0,1500,1000,0])

def angle(x1,y1):
# Returns angle of each segment along an (x,y) track
return array([math.atan2(y,x) for (y,x) in zip(diff(y1),diff(x1))])
def simplify(x,y, tolerance=40, min_angle = 60.*pi/180.):
"""
Use the Ramer-Douglas-Peucker algorithm to simplify the path
http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
Python implementation: https://github.com/sebleier/RDP/
"""
from RDP import rdp
points=vstack((x,y)).T
simplified = array(rdp(points.tolist(), tolerance))
sx, sy = simplified.T
theta=abs(diff(angle(sx,sy)))
# Select the index of the points with the greatest theta
# Large theta is associated with greatest change in direction.
idx = where(theta>min_angle)[0]+1
return sx,sy,idx
sx1,sy1,i1 = simplify(x1[ind1],y1[ind1])
sx2,sy2,i2 = simplify(x2[ind2],y2[ind2])
fig = plt.figure(figsize=(10,6))
ax =fig.add_subplot(111)
ax.plot(x1, y1, 'b-', x2, y2, 'g-',label='original path')
ax.plot(sx1, sy1, 'ko-', sx2, sy2, 'ko-',lw=2, label='simplified path')
ax.plot(sx1[i1], sy1[i1], 'ro', sx2[i2], sy2[i2], 'ro',
markersize = 10, label='turning points')
ax.invert_yaxis()
plt.legend(loc='best')

# determine x,y offset between 1st turning points, and
# angle from difference in slopes of line segments approaching 1st turning point
xoff = sx2[i2[0]] - sx1[i1[0]]
yoff = sy2[i2[0]] - sy1[i1[0]]
iseg1 = [i1[0]-1, i1[0]]
iseg2 = [i2[0]-1, i2[0]]
ang1 = angle(sx1[iseg1], sy1[iseg1])
ang2 = angle(sx2[iseg2], sy2[iseg2])
ang = -(ang2[0] - ang1[0])
print xoff, yoff, ang*180.*pi
-28 14 5.07775871644
# 2x3 affine matrix M
M=array([cos(ang),sin(ang),xoff,-sin(ang),cos(ang),yoff]).reshape(2,3)
print M
[[ 9.99959685e-01 8.97932821e-03 -2.80000000e+01]
[ -8.97932821e-03 9.99959685e-01 1.40000000e+01]]
# warp 2nd image into coordinate frame of 1st
Minv = cv2.invertAffineTransform(M)
gray2b = cv2.warpAffine(gray2,Minv,shape(gray2.T))
figure(figsize=(10,10))
imshow(gray1,cmap=cm.gray, alpha=0.5);plot(x1[ind1],y1[ind1],'b-')
imshow(gray2b,cmap=cm.gray, alpha=0.5);
axis([0,1500,1000,0]);
title('image1 and transformed image2 overlain with 50% transparency');
