我进行了一些计算以获取 numpy 数组的列表。随后,我想找到沿第一个轴的最大值。我目前的实现(见下文)非常缓慢,我想找到替代方案。
原来的
pending = [<list of items>]
matrix = [compute(item) for item in pending if <some condition on item>]
dominant = np.max(matrix, axis = 0)
修订版 1:这个实现更快(~10x;大概是因为 numpy 不需要弄清楚数组的形状)
pending = [<list of items>]
matrix = [compute(item) for item in pending if <some condition on item>]
matrix = np.vstack(matrix)
dominant = np.max(matrix, axis = 0)
我进行了几次测试,速度变慢似乎是由于数组列表到 numpy 数组的内部转换
Timer unit: 1e-06 s
Total time: 1.21389 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4 def direct_max(list_of_arrays):
5 1000 1213886 1213.9 100.0 np.max(list_of_arrays, axis = 0)
Total time: 1.20766 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
8 def numpy_max(list_of_arrays):
9 1000 1151281 1151.3 95.3 list_of_arrays = np.array(list_of_arrays)
10 1000 56384 56.4 4.7 np.max(list_of_arrays, axis = 0)
Total time: 0.15437 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
12 @profile
13 def stack_max(list_of_arrays):
14 1000 102205 102.2 66.2 list_of_arrays = np.vstack(list_of_arrays)
15 1000 52165 52.2 33.8 np.max(list_of_arrays, axis = 0)
有什么方法可以加快 max 函数的速度,还是可以用我的计算结果有效地填充一个 numpy 数组,从而使 max 快?